1,234 research outputs found

    Axion searches at CERN with the CAST Telescope

    Full text link
    The CERN Axion Solar Telescope (CAST) searches for axions coming from photon to axion conversion in the sun's core, as stated by the Primakoff effect. Axions arise in particle physics as a consequence of the breaking of Peccei-Quinn symmetry which has been introduced as a solution to the strong CP problem. As cosmological axions they are candidates for at least some part of cold Dark Matter.They are also expected to be produced copiously in stellar interiors with energies as high as the thermal photons undergoing photon to axion conversion. In our sun the axion energy spectrum peaks at about 4.4 keV, extending up to 10 keV. CAST collected preliminary data in 2002 and data taking with its full capability will start in the beginning of 2003.Comment: NEB-X Conference on "New Developments in Gravity", May 30-June 2, 2002, Chalkidiki, GREECE. 5 pages, 2 figure

    Low energy recoil detection with a spherical proportional counter

    Full text link
    We present low energy recoil detection results in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An 241Am9Be{}^{241}Am-{}^{9}{Be} fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the keVkeV energy region was resolved by observing the 5.9 keV5.9\ keV line of a 55Fe{}^{55}Fe X-ray source, with energy resolution of 9%9\% (σ\sigma). The toolkit GEANT4 was used to simulate the irradiation of the detector by an 241Am9Be{}^{241}Am-{}^{9}{Be} source, while SRIM was used to calculate the Ionization Quenching Factor (IQF). The GEANT4 simulated energy deposition spectrum in addition with the SRIM calculated quenching factor provide valuable insight to the experimental results. The performance of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searches (via coherent elastic scattering).Comment: 16 pages, 16 figures, preprin

    The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model

    Get PDF
    In this study, we evaluate the ability of the latest NASA GISS composition-climate model, GISS-E2-PUCCINI, to simulate the spatial distribution of snow BC (sBC) in the Arctic relative to present-day observations. Radiative forcing due to BC deposition onto Arctic snow and sea ice is also estimated. Two sets of model simulations are analyzed, where meteorology is linearly relaxed towards National Centers for Environmental Prediction (NCEP) and towards NASA Modern Era Reanalysis for Research and Applications (MERRA) reanalyses. Results indicate that the modeled concentrations of sBC are comparable with present-day observations in and around the Arctic Ocean, except for apparent underestimation at a few sites in the Russian Arctic. That said, the model has some biases in its simulated spatial distribution of BC deposition to the Arctic. The simulations from the two model runs are roughly equal, indicating that discrepancies between model and observations come from other sources. Underestimation of biomass burning emissions in Northern Eurasia may be the main cause of the low biases in the Russian Arctic. Comparisons of modeled aerosol BC (aBC) with long-term surface observations at Barrow, Alert, Zeppelin and Nord stations show significant underestimation in winter and spring concentrations in the Arctic (most significant in Alaska), although the simulated seasonality of aBC has been greatly improved relative to earlier model versions. This is consistent with simulated biases in vertical profiles of aBC, with underestimation in the lower and middle troposphere but overestimation in the upper troposphere and lower stratosphere, suggesting that the wet removal processes in the current model may be too weak or that vertical transport is too rapid, although the simulated BC lifetime seems reasonable. The combination of observations and modeling provides a comprehensive distribution of sBC over the Arctic. On the basis of this distribution, we estimate the decrease in snow and sea ice albedo and the resulting radiative forcing. We suggest that the albedo reduction due to BC deposition presents significant space-time variations, with highest mean reductions of 1.25% in the Russian Arctic, which are much larger than those in other Arctic regions (0.39% to 0.64%). The averaged value over the Arctic north of 66° N is 0.4–0.6% during spring, leading to regional surface radiative forcings of 0.7, 1.1 and 1.0 W m<sup>−2</sup> in spring 2007, 2008 and 2009, respectively

    Size resolved mass concentration and elemental composition of atmospheric aerosols over the Eastern Mediterranean area

    Get PDF
    International audienceA Berner low pressure impactor was used to collect size-segregated aerosol samples at Finokalia, located on the north-eastern coast of Crete, Greece during July 2000 and January 2001. Several samples were also collected during the summer campaign aboard the research vessel "AEGAIEO" in the Aegean Sea. Gravimetric analysis and inversion techniques yielded daily PM1 and PM10 mass concentrations. The samples were also analysed by PIXE giving the elemental size distributions of Al, Si, K, Ca, Ti, Mn, Fe, Sr, S, Cl, Ni, V, Cu, Cr, Zn, and Pb. The crustal elements and sea-salt had a unimodal supermicron size distribution. Sulphur was found predominantly in submicron fractions. K, V, and Ni exhibited a bimodal distribution with a submicron mode produced by forest fires and oil combustion. The anthropogenic elements had broad and not well-defined distributions. The time series for PM1 and PM10 mass and elemental concentrations showed both daily and seasonal variation. Higher mass concentrations were observed during two incursions of Saharan dust, whilst higher concentrations of S, Cu, Zn, and Pb were encountered in samples collected in air masses arriving from northern Greece or the western coast of Turkey. Elevated concentrations of chlorine were found in samples with air masses either originating above the Atlantic Ocean and arriving at Finokalia via western Europe or recirculating over the western coast of the Black Sea

    Characterization of a murine mixed neuron-glia model and cellular responses to regulatory T cell-derived factors

    Get PDF
    Abstract One of the unmet clinical needs in demyelinating diseases such as Multiple Sclerosis (MS) is to provide therapies that actively enhance the process of myelin regeneration (remyelination) in the central nervous system (CNS). Oligodendrocytes, the myelinating cells of the CNS, play a central role in remyelination and originate from oligodendrocyte progenitor cells (OPCs). We recently showed that depletion of regulatory T cells (Treg) impairs remyelination in vivo, and that Treg-secreted factors directly enhance oligodendrocyte differentiation. Here we aim to further characterize the dynamics of Treg-enhanced oligodendrocyte differentiation as well as elucidate the cellular components of a murine mixed neuron-glia model. Murine mixed neuron-glia cultures were generated from P2–7 C57BL/6 mice and characterized for percentage of neuronal and glial cell populations prior to treatment at 7 days in vitro (div) as well as after treatment with Treg-conditioned media at multiple timepoints up to 12 div. Mixed neuron-glia cultures consisted of approximately 30% oligodendroglial lineage cells, 20% neurons and 10% microglia. Furthermore, a full layer of astrocytes, that could not be quantified, was present. Treatment with Treg-conditioned media enhanced the proportion of MBP+ oligodendrocytes and decreased the proportion of PDGFRα+ OPCs, but did not affect OPC proliferation or survival. Treg-enhanced oligodendrocyte differentiation was not caused by Treg polarizing factors, was dependent on the number of activation cycles Treg underwent and was robustly achieved by using 5% conditioned media. These studies provide in-depth characterization of a murine mixed neuron-glia model as well as further insights into the dynamics of Treg-enhanced oligodendrocyte differentiation

    The (234)U neutron capture cross section measurement at the n_TOF facility

    Get PDF
    The neutron capture cross-section of (234)U has been measured for energies from thermal up to the keV region in the neutron time-of-flight facility n_TOF, based on a spallation source located at CERN. A 4 pi BaF(2) array composed of 40 crystals, placed at a distance of 184.9 m from the neutron source, was employed as a total absorption calorimeter (TAC) for detection of the prompt gamma-ray cascade from capture events in the sample. This text describes the experimental setup, all necessary steps followed during the data analysis procedure. Results are presented in the form of R-matrix resonance parameters from fits with the SAMMY code and compared to the evaluated data of ENDF in the relevant energy region, indicating the good performance of the n_TOF facility and the TAC

    Present Status and Future Programs of the n_TOF Experiment

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.The most relevant measurements performed up to now and foreseen for the future will be presented in this contribution. The overall efficiency of the experimental program and the range of possible measurements achievable with the construction of a second experimental area (EAR-2), vertically located 20 m on top of the n_TOF spallation target, might offer a substantial improvement in measurement sensitivities. A feasibility study of the possible realisation of the installation extension will be also presented

    Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF

    Get PDF
    Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated
    corecore