17 research outputs found

    On the Origin of Indonesian Cattle

    Get PDF
    Background: Two bovine species contribute to the Indonesian livestock, zebu (Bos indicus) and banteng (Bos javanicus), respectively. Although male hybrid offspring of these species is not fertile, Indonesian cattle breeds are supposed to be of mixed species origin. However, this has not been documented and is so far only supported by preliminary molecular analysis. Methods and Findings: Analysis of mitochondrial, Y-chromosomal and microsatellite DNA showed a banteng introgression of 10-16% in Indonesian zebu breeds. East-Javanese Madura and Galekan cattle have higher levels of autosomal banteng introgression (20-30%) and combine a zebu paternal lineage with a predominant (Madura) or even complete (Galekan) maternal banteng origin. Two Madura bulls carried taurine Y-chromosomal haplotypes, presumably of French Limousin origin. In contrast, we did not find evidence for zebu introgression in five populations of the Bali cattle, a domestic form of the banteng. Conclusions: Because of their unique species composition Indonesian cattle represent a valuable genetic resource, which potentially may also be exploited in other tropical regions. © 2009 Mohamad et al

    Evolutionary patterns of two major reproduction candidate genes (Zp2 and Zp3) reveal no contribution to reproductive isolation between bovine species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been established that mammalian egg zona pellucida (ZP) glycoproteins are responsible for species-restricted binding of sperm to unfertilized eggs, inducing the sperm acrosome reaction, and preventing polyspermy. In mammals, ZP apparently represents a barrier to heterospecific fertilization and thus probably contributes to reproductive isolation between species. The evolutionary relationships between some members of the tribe Bovini are complex and highly debatable, particularly, those involving <it>Bos </it>and <it>Bison </it>species for which interspecific hybridization is extensively documented. Because reproductive isolation is known to be a major precursor of species divergence, testing evolutionary patterns of ZP glycoproteins may shed some light into the speciation process of these species. To this end, we have examined intraspecific and interspecific genetic variation of two ZP genes (<it>Zp2 </it>and <it>Zp3</it>) for seven representative species (111 individuals) from the Bovini tribe, including five species from <it>Bos </it>and <it>Bison</it>, and two species each from genera <it>Bubalus </it>and <it>Syncerus</it>.</p> <p>Results</p> <p>A pattern of low levels of intraspecific polymorphism and interspecific divergence was detected for the two sequenced fragments each for <it>Zp2 </it>and <it>Zp3</it>. At intraspecific level, none of neutrality tests detected deviations from neutral equilibrium expectations for the two genes. Several haplotypes in both genes were shared by multiple species from <it>Bos </it>and <it>Bison</it>.</p> <p>Conclusions</p> <p>Here we argue that neither ancestral polymorphism nor introgressive hybridization alone can fully account for haplotype sharing among species from <it>Bos </it>and <it>Bison</it>, and that both scenarios have contributed to such a pattern of haplotype sharing observed here. Additionally, codon-based tests revealed strong evidence for purifying selection in the <it>Zp3 </it>coding haplotype sequences and weak evidence for purifying selection in the <it>Zp2 </it>coding haplotype sequences. Contrary to a general genetic pattern that genes or genomic regions contributing to reproductive isolation between species often evolve rapidly and show little or no gene flow between species, these results demonstrate that, particularly, those sequenced exons of the <it>Zp2 </it>and the <it>Zp3 </it>did not show any contribution to reproductive isolation between the bovine species studied here.</p

    Recommendations for animal DNA forensic and identity testing

    No full text
    Genetic analysis in animals has been used for many applications, such as kinship analysis, for determining the sire of an offspring when a female has been exposed to multiple males, determining parentage when an animal switches offspring with another dam, extended lineage reconstruction, estimating inbreeding, identification in breed registries, and speciation. It now also is being used increasingly to characterize animal materials in forensic cases. As such, it is important to operate under a set of minimum guidelines that assures that all service providers have a template to follow for quality practices. None have been delineated for animal genetic identity testing. Based on the model for human DNA forensic analyses, a basic discussion of the issues and guidelines is provided for animal testing to include analytical practices, data evaluation, nomenclature, allele designation, statistics, validation, proficiency testing, lineage markers, casework files, and reporting. These should provide a basis for professional societies and/or working groups to establish more formalized recommendations
    corecore