542 research outputs found

    ‘Who is Helsinki?’ Sex workers advise improving communication for good participatory practice in clinical trials

    Get PDF
    After premature closures in 2004 of biomedical human immunodeficiency virus (HIV) prevention trials involving sex workers in Africa and Asia, the Joint United Nations Programme on HIV/AIDS (UNAIDS) and Global Advocacy for HIV Prevention (AVAC) undertook consultations to establish better participatory guidelines for such trials in order to address ethical concerns. This study investigated sex workers’ knowledge and beliefs about research ethics and good participatory practices (GPP) and the perspectives of sex workers on research participation. A 33-question survey based on criteria identified by UNAIDS and AVAC was translated into three other languages. Participants were recruited through mailing lists and contacts with existing sex work networks. In total, 74 responses from Europe, the Americas and Asia were received. Thirty percent of respondents reported first-hand involvement in biomedical HIV prevention trials. Seventy percent indicated a lack of familiarity with codes of ethics for research. This paper focuses exclusively on communication issues described in survey responses. Communication was an important theme: the absence of clear communication between trial participants and investigators contributed to premature trial closures in at least two sites. Sex workers had recommendations for how researchers might implement GPP through improved communication, including consultation at the outset of planning, explaining procedures in non-technical terms and establishing clear channels for feedback from participants

    The Universe Was Reionized Twice

    Get PDF
    We show the universe was reionized twice, first at z~15-16 and second at z~6. Such an outcome appears inevitable, when normalizing to two well determined observational measurements, namely, the epoch of the final cosmological reionization at z~6 and the density fluctuations at z~6, which in turn are tight ly constrained by Lyman alpha forest observations at z~3. These two observations most importantly fix the product of star formation efficiency and ionizing photon escape fraction from galaxies at high redshift. To the extent that the relative star formation efficiencies in gaseous minihalos with H2 cooling and large halos with atomic cooling at high redshift are still unknown, the primary source for the first reionization could be Pop III stars either in minihalos or in large halos. We show that gas in minihalos can be cooled efficiently by H2 molecules and star formation can continue to take place largely unimpeded throughout the first reionization period, thanks to two new mechanisms for generating a high X-ray background during the Pop III era, put forth here. Moreover, an important process for producing a large number of H2 molecules in relic HII regions of Pop III galaxies, first pointed out by Ricotti, Gnedin, & Shull, is quantified here. It is shown that the Lyman-Werner background may never build up during the Pop III era. The long cosmological reionization and reheating history is complex. We discuss a wide range of implications and possible tests for this new reionization picture. In particular, Thomson scattering optical depth is increased to 0.10 +- 0.03, compared to 0.027 for the case of only one rapid reionization at z=6. Upcoming Microwave Anisotropy Probe observation of the polarization of the cosmic microwave background should be able to distinguish between these two scenarios.Comment: submitted to ApJ, 69 pages, substantial revision made and conclusions strengthene

    ‘You Before Me’: A qualitative study of Health Care Professionals’ and students’ understanding and experiences of compassion in the workplace, self-compassion, self-care and health behaviours

    Get PDF
    Background: The importance of compassionate care within health care services is at the forefront of training and workplace policy and practice. The challenges for Health Care Professionals (HCPs) in delivering compassionate care are wide-ranging. Aims: This study explored the experiences of HCPs in delivering compassionate care and examined the impact of working in the health profession on their own health and wellbeing in order to increase knowledge around how to support HCPs in the workplace. Methods: A phenomenological approach was adopted, and individual semi-structured interviews were carried out with a sample of twenty-three qualified and student HCPs. The data was analysed using thematic analysis using Braun and Clarke’s (2006) procedural steps. Results: Four major themes were constructed: (a) Keeping it real: The need for authentic compassion, (b) Compassion takes time: Barriers to delivering compassionate care, (c) There’s no time to think about myself: Self compassion, self-care and health behaviours, and (d) Does anybody care? Accessing support. Participants talked of the occupational difficulties of providing high quality compassionate care and described a deficit of self-care in both their working and non-working lives. Conclusions: This study suggests an ethical and pragmatic imperative to enhance the care and support for HCPs, particularly given the current and projected shortage of HCPs alongside a suggested model of compassionate self-care for improving health and wellbeing Keywords: Health Care Professionals, Compassion, Self-compassion, Self-care, Health behaviour

    In the Beginning: The First Sources of Light and the Reionization of the Universe

    Full text link
    The formation of the first stars and quasars marks the transformation of the universe from its smooth initial state to its clumpy current state. In popular cosmological models, the first sources of light began to form at redshift 30 and reionized most of the hydrogen in the universe by redshift 7. Current observations are at the threshold of probing the hydrogen reionization epoch. The study of high-redshift sources is likely to attract major attention in observational and theoretical cosmology over the next decade.Comment: Final revision: 136 pages, including 42 figures; to be published in Physics Reports 2001. References updated, and a few minor corrections made. In this submission, several figures were compressed, resulting in just a slight reduction in quality; a postscript file with the full figures is available at http://www.cita.utoronto.ca/~barkana/review.htm

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore