1,872 research outputs found

    Parton rescattering and screening in Au+Au collisions at RHIC

    Get PDF
    We study the microscopic dynamics of quarks and gluons in relativistic heavy ion collisions in the framework of the Parton Cascade Model. We use lowest order perturbative QCD cross sections with fixed lower momentum cutoff p_0. We calculate the time-evolution of the Debye-screening mass for Au+Au collisions at sqrt(s)=200 GeV per nucleon pair. The screening mass is used to determine a lower limit for the allowed range of p_0. We also determine the energy density reached through hard and semi-hard processes at RHIC, obtain a lower bound for the rapidity density of charged hadrons produced by semihard interactions, and analyze the extent of perturbative rescattering among partons.Comment: 6 pages, 4 figures, uses RevTeX 4.0; revised version with minor corrections and one updated figur

    Development of relativistic shock waves in viscous gluon matter

    Full text link
    To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s\eta/s. We show that an η/s\eta/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. These findings are confirmed by viscous hydrodynamic calculations.Comment: 4 pages, 3 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    The QGP phase in relativistic heavy-ion collisions

    Full text link
    The dynamics of partons, hadrons and strings in relativistic nucleus-nucleus collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model for partons (DQPM) matched to reproduce recent lattice-QCD results - including the partonic equation of state - in thermodynamic equilibrium. The transition from partonic to hadronic degrees of freedom is described by covariant transition rates for the fusion of quark-antiquark pairs or three quarks (antiquarks), respectively, obeying flavor current-conservation, color neutrality as well as energy-momentum conservation. The PHSD approach is applied to nucleus-nucleus collisions from low SIS to RHIC energies. The traces of partonic interactions are found in particular in the elliptic flow of hadrons as well as in their transverse mass spectra.Comment: To be published by Springer in Proceedings of the International Symposium on `Exciting Physics', Makutsi-Range, South Africa, 13-20 November, 201

    Semaine d'Etude Mathématiques et Entreprises 5 : Reconstruction de couches géologiques à partir de données discrètes

    Get PDF
    Ce rapport synthétise le travail de recherche mis en oeuvre durant la cinquième Semaine d'Etude Maths-Entreprises à l'Ecole des Mines de Nancy. Le sujet a été proposé par le consortium GOCAD: comment reconstituer efficacement le sous-sol terrestre à partir de données discrètes éparses ? Un état de l'art est d'abord effectué sur les différentes méthodes existantes : cokrigeage statistique (Calcagno et al., 2008), discrétisation numérique (Caumon et al., 2013) et modélisation physique entre deux horizons géologiques (Hjelle and Petersen, 2011). Ensuite, nous avons tenté d'adapter l'approche (Hjelle and Petersen, 2011) à notre problématique. Il s'agit de représenter chaque couche géologique par les points d'annulation d'une fonction dont l'évolution est gérée par une loi qui contient les informations connues et permettra la reconstitution in fine du sous-sol. Finalement, on effectue la résolution numérique de l'équation de Hamilton-Jacobi associée à cette loi de propagation, s'aidant de (Osher and Fedkiw, 2003). Par souci de simplicité et surtout par manque de temps, le modèle sera résolu numériquement en 2-D et sans failles

    Highly-anisotropic and strongly-dissipative hydrodynamics with transverse expansion

    Full text link
    A recently formulated framework of highly-anisotropic and strongly-dissipative hydrodynamics (ADHYDRO) is used to describe the evolution of matter created in ultra-relativistic heavy-ion collisions. New developments of the model contain: the inclusion of asymmetric transverse expansion (combined with the longitudinal boost-invariant flow) and comparisons of the model results with the RHIC data, which have become possible after coupling of ADHYDRO with THERMINATOR. Various soft-hadronic observables (the transverse-momentum spectra, the elliptic flow coefficient v_2, and the HBT radii) are calculated for different initial conditions characterized by the value of the initial pressure asymmetry. We find that as long as the initial energy density profile is unchanged the calculated observables remain practically the same. This result indicates the insensitivity of the analyzed observables to the initial anisotropy of pressure and suggests that the complete thermalization of the system may be delayed to easily acceptable times of about 1 fm/c

    Thermal photons in QGP and non-ideal effects

    Full text link
    We investigate the thermal photon production-rates using one dimensional boost-invariant second order relativistic hydrodynamics to find proper time evolution of the energy density and the temperature. The effect of bulk-viscosity and non-ideal equation of state are taken into account in a manner consistent with recent lattice QCD estimates. It is shown that the \textit{non-ideal} gas equation of state i.e ϵ3P0\epsilon-3\,P\,\neq 0 behaviour of the expanding plasma, which is important near the phase-transition point, can significantly slow down the hydrodynamic expansion and thereby increase the photon production-rates. Inclusion of the bulk viscosity may also have similar effect on the hydrodynamic evolution. However the effect of bulk viscosity is shown to be significantly lower than the \textit{non-ideal} gas equation of state. We also analyze the interesting phenomenon of bulk viscosity induced cavitation making the hydrodynamical description invalid. We include the viscous corrections to the distribution functions while calculating the photon spectra. It is shown that ignoring the cavitation phenomenon can lead to erroneous estimation of the photon flux.Comment: 11 pages, 13 figures; accepted for publication in JHE

    A facility to Search for Hidden Particles (SHiP) at the CERN SPS

    Get PDF
    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below O{\cal O}(10)~GeV/c2^2, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation.Comment: Technical Proposa

    Centrality Dependence of Charged Particle Multiplicity in Au-Au Collisions at sqrt(s_NN)=130 GeV

    Full text link
    We present results for the charged-particle multiplicity distribution at mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find dNch/dηη=0=622±1(stat)±41(syst)dN_{ch}/d\eta_{|\eta=0} = 622 \pm 1 (stat) \pm 41 (syst). The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality.Comment: 307 authors, 43 institutions, 6 pages, 4 figures, 1 table Minor changes to figure labels and text to meet PRL requirements. One author added: M. Hibino of Waseda Universit

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Centrality dependence of pi^[+/-], K^[+/-], p and p-bar production from sqrt(s_NN)=130 GeV Au + Au collisions at RHIC

    Get PDF
    Identified pi^[+/-] K^[+/-], p and p-bar transverse momentum spectra at mid-rapidity in sqrt(s_NN)=130 GeV Au-Au collisions were measured by the PHENIX experiment at RHIC as a function of collision centrality. Average transverse momenta increase with the number of participating nucleons in a similar way for all particle species. The multiplicity densities scale faster than the number of participating nucleons. Kaon and nucleon yields per participant increase faster than the pion yields. In central collisions at high transverse momenta (p_T greater than 2 GeV/c), anti-proton and proton yields are comparable to the pion yields.Comment: 6 pages, 3 figures, 1 table, 307 authors, accepted by Phys. Rev. Lett. on 9 April 2002. This version has minor changes made in response to referee Comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
    corecore