7,113 research outputs found

    Preventing Advanced Persistent Threats in Complex Control Networks

    Get PDF
    An Advanced Persistent Threat (APT) is an emerging attack against Industrial Control and Automation Systems, that is executed over a long period of time and is difficult to detect. In this context, graph theory can be applied to model the interaction among nodes and the complex attacks affecting them, as well as to design recovery techniques that ensure the survivability of the network. Accordingly, we leverage a decision model to study how a set of hierarchically selected nodes can collaborate to detect an APT within the network, concerning the presence of changes in its topology. Moreover, we implement a response service based on redundant links that dynamically uses a secret sharing scheme and applies a flexible routing protocol depending on the severity of the attack. The ultimate goal is twofold: ensuring the reachability between nodes despite the changes and preventing the path followed by messages from being discovered.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The Carbon-Rich Gas in the Beta Pictoris Circumstellar Disk

    Full text link
    The edge-on disk surrounding the nearby young star Beta Pictoris is the archetype of the "debris disks", which are composed of dust and gas produced by collisions and evaporation of planetesimals, analogues of Solar System comets and asteroids. These disks provide a window on the formation and early evolution of terrestrial planets. Previous observations of Beta Pic concluded that the disk gas has roughly solar abundances of elements [1], but this poses a problem because such gas should be rapidly blown away from the star, contrary to observations of a stable gas disk in Keplerian rotation [1, 2]. Here we report the detection of singly and doubly ionized carbon (CII, CIII) and neutral atomic oxygen (OI) gas in the Beta Pic disk; measurement of these abundant volatile species permits a much more complete gas inventory. Carbon is extremely overabundant relative to every other measured element. This appears to solve the problem of the stable gas disk, since the carbon overabundance should keep the gas disk in Keplerian rotation [3]. New questions arise, however, since the overabundance may indicate the gas is produced from material more carbon-rich than the expected Solar System analogues.Comment: Accepted for publication in Nature. PDF document, 12 pages. Supplementary information may be found at http://www.dtm.ciw.edu/akir/Documents/roberge_supp.pdf *** Version 2 : Removed extraneous publication information, per instructions from the Nature editor. No other changes mad

    Analysis of the geographic distribution of HFRS in Liaoning Province between 2000 and 2005

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic fever with renal syndrome (HFRS) is endemic in Liaoning Province, China, and this province was the most serious area affected by HFRS during 2004 to 2005. In this study, we conducted a spatial analysis of HFRS cases with the objective to determine the distribution of HFRS cases and to identify key areas for future public health planning and resource allocation in Liaoning Province.</p> <p>Methods</p> <p>The annual average incidence at the county level was calculated using HFRS cases reported between 2000 and 2005 in Liaoning Province. GIS-based spatial analyses were conducted to detect spatial distribution and clustering of HFRS incidence at the county level, and the difference of relative humidity and forestation between the cluster areas and non-cluster areas was analyzed.</p> <p>Results</p> <p>Spatial distribution of HFRS cases in Liaoning Province from 2000 to 2005 was mapped at the county level to show crude incidence, excess hazard, and spatial smoothed incidence. Spatial cluster analysis suggested 16 and 41 counties were at increased risk for HFRS (p < 0.01) with the maximum spatial cluster sizes at ≤ 50% and ≤ 30% of the total population, respectively, and the analysis showed relative humidity and forestation in the cluster areas were significantly higher than in other areas.</p> <p>Conclusion</p> <p>Some clustering of HFRS cases in Liaoning Province may be etiologically linked. There was strong evidence some HFRS cases in Liaoning Province formed clusters, but the mechanism underlying it remains unknown. In this study we found the clustering was consistent with the relative humidity and amount of forestation, and showed data indicating there may be some significant relationships.</p

    Breed-Specific Hematological Phenotypes in the Dog: A Natural Resource for the Genetic Dissection of Hematological Parameters in a Mammalian Species

    Get PDF
    Remarkably little has been published on hematological phenotypes of the domestic dog, the most polymorphic species on the planet. Information on the signalment and complete blood cell count of all dogs with normal red and white blood cell parameters judged by existing reference intervals was extracted from a veterinary database. Normal hematological profiles were available for 6046 dogs, 5447 of which also had machine platelet concentrations within the reference interval. Seventy-five pure breeds plus a mixed breed control group were represented by 10 or more dogs. All measured parameters except mean corpuscular hemoglobin concentration (MCHC) varied with age. Concentrations of white blood cells (WBCs), neutrophils, monocytes, lymphocytes, eosinophils and platelets, but not red blood cell parameters, all varied with sex. Neutering status had an impact on hemoglobin concentration, mean corpuscular hemoglobin (MCH), MCHC, and concentrations of WBCs, neutrophils, monocytes, lymphocytes and platelets. Principal component analysis of hematological data revealed 37 pure breeds with distinctive phenotypes. Furthermore, all hematological parameters except MCHC showed significant differences between specific individual breeds and the mixed breed group. Twenty-nine breeds had distinctive phenotypes when assessed in this way, of which 19 had already been identified by principal component analysis. Tentative breed-specific reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis. This study represents the first large-scale analysis of hematological phenotypes in the dog and underlines the important potential of this species in the elucidation of genetic determinants of hematological traits, triangulating phenotype, breed and genetic predisposition

    Classical Conformal Blocks and Accessory Parameters from Isomonodromic Deformations

    Get PDF
    Classical conformal blocks naturally appear in the large central charge limit of 2D Virasoro conformal blocks. In the AdS3/CFT2AdS_{3}/CFT_{2} correspondence, they are related to classical bulk actions and are used to calculate entanglement entropy and geodesic lengths. In this work, we discuss the identification of classical conformal blocks and the Painlev\'e VI action showing how isomonodromic deformations naturally appear in this context. We recover the accessory parameter expansion of Heun's equation from the isomonodromic τ\tau-function. We also discuss how the c=1c = 1 expansion of the τ\tau-function leads to a novel approach to calculate the 4-point classical conformal block.Comment: 32+10 pages, 2 figures; v3: upgraded notation, discussion on moduli space and monodromies, numerical and analytic checks; v2: added refs, fixed emai

    Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects

    Full text link
    We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation in R3R^{3} phase space. We demonstrate that it accommodates the phase space dynamics of low dimensional dissipative systems such as the much studied Lorenz and R\"{o}ssler Strange attractors, as well as the more recent constructions of Chen and Leipnik-Newton. The rotational, volume preserving part of the flow preserves in time a family of two intersecting surfaces, the so called {\em Nambu Hamiltonians}. They foliate the entire phase space and are, in turn, deformed in time by Dissipation which represents their irrotational part of the flow. It is given by the gradient of a scalar function and is responsible for the emergence of the Strange Attractors. Based on our recent work on Quantum Nambu Mechanics, we provide an explicit quantization of the Lorenz attractor through the introduction of Non-commutative phase space coordinates as Hermitian N×N N \times N matrices in R3 R^{3}. They satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Quantum Lorenz system give rise to an attracting ellipsoid in the 3N23 N^{2} dimensional phase space.Comment: 35 pages, 4 figures, LaTe

    Host-specific genetic variation of highly pathogenic avian influenza viruses (H5N1)

    Get PDF
    The complete genome sequences of two isolates A/chicken/Egypt/CL6/07 (CL6/07) and A/duck/Egypt/D2br10/07 (D2br10/07) of highly pathogenic avian influenza virus (HPAI) H5N1 isolated at the beginning of 2007 outbreak in Egypt were determined and compared with all Egyptian HPAI H5N1 sequences available in the GenBank. Sequence analysis utilizing the RNA from the original tissue homogenate showed amino acid substitutions in seven of the viral segments in both samples. Interestingly, these changes were different between the CL6/07 and D2br10/07 when compared to other Egyptian isolates. Moreover, phylogenetic analysis showed independent sub-clustering of the two viruses within the Egyptian sequences signifying a possible differential adaptation in the two hosts. Further, pre-amplification analysis of H5N1 might be necessary for accurate data interpretation and identification of distinct factor(s) influencing the evolution of the virus in different poultry species

    Visualization and quantitation of the expression of microRNAs and their target genes in neuroblastoma single cells using imaging cytometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are regulatory molecules that play an important role in many physiological processes, including cell growth, differentiation, and apoptosis. In addition to modulating normal cellular functions, it has also been reported that miRNAs are involved in the development of many pathologies, including cardiovascular diseases, cancer, inflammation, and neurodegeneration. Methods for the sensitive detection and measurement of specific miRNAs and their cellular targets are essential for both basic research endeavours, as well as diagnostic efforts aimed at understanding the role of miRNAs in disease processes.</p> <p>Findings</p> <p>In this study, we describe a novel, imaging cytometry-based protocol that allows for simultaneous visualisation and quantification of miRNAs and their putative targets. We validated this methodology in a neuronal cell line by examining the relationship of the miRNA miR-124 and its known target, cyclin dependent kinase 6 (CDK6). We found that ectopic overexpression of miR-124 resulted in the downregulation of CDK6, decreased cellular proliferation, and induced cellular morphological changes.</p> <p>Conclusions</p> <p>This method is suitable for analysing the expression and cellular localisation of miRNAs and target proteins in small cell subsets within a heterogeneous cell suspension. We believe that our cytometry-based methodology will be easily adaptable to miRNA studies in many areas of biomedical research including neuroscience, stem cell biology, immunology, and oncology.</p

    Phylogeography of Japanese encephalitis virus:genotype is associated with climate

    Get PDF
    The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate
    corecore