30 research outputs found
Single polymer adsorption in shear: flattening versus hydrodynamic lift and corrugation effects
The adsorption of a single polymer to a flat surface in shear is investigated
using Brownian hydrodynamics simulations and scaling arguments. Competing
effects are disentangled: in the absence of hydrodynamic interactions, shear
drag flattens the chain and thus enhances adsorption. Hydrodynamic lift on the
other hand gives rise to long-ranged repulsion from the surface which preempts
the surface-adsorbed state via a discontinuous desorption transition, in
agreement with theoretical arguments. Chain flattening is dominated by
hydrodynamic lift, so overall, shear flow weakens the adsorption of flexible
polymers. Surface friction due to small-wavelength surface potential
corrugations is argued to weaken the surface attraction as well.Comment: 6 pages, 4 figure
In-depth mesocrystal formation analysis of microwave-assisted synthesis of LiMnPO4nanostructures in organic solution
In the present work, we report on the preparation of LiMnPO4 (lithiophilite) nanorods and mesocrystals composed of self-assembled rod subunits employing microwave-assisted precipitation with processing times on the time scale of minutes. Starting from metal salt precursors and H3PO4 as phosphate source, single-phase LiMnPO4 powders with grain sizes of approx. 35 and 65 nm with varying morphologies were obtained by tailoring the synthesis conditions using rac-1-phenylethanol as solvent. The mesocrystal formation, microstructure and phase composition were determined by electron microscopy, nitrogen physisorption, X-ray diffraction (including Rietveld refinement), dynamic light scattering, X-ray absorption and X-ray photoelectron spectroscopy, and other techniques. In addition, we investigated the formed organic matter by gas chromatography coupled with mass spectrometry in order to gain a deeper understanding of the dissolution\u2013precipitation process. Also, we demonstrate that the obtained LiMnPO4 nanocrystals can be redispersed in polar solvents such as ethanol and dimethylformamide and are suitable as building blocks for the fabrication of nanofibers via electrospinning
Mesoscopic models for DNA stretching under force: new results and comparison to experiments
Single molecule experiments on B-DNA stretching have revealed one or two
structural transitions, when increasing the external force. They are
characterized by a sudden increase of DNA contour length and a decrease of the
bending rigidity. It has been proposed that the first transition, at forces of
60--80 pN, is a transition from B to S-DNA, viewed as a stretched duplex DNA,
while the second one, at stronger forces, is a strand peeling resulting in
single stranded DNAs (ssDNA), similar to thermal denaturation. But due to
experimental conditions these two transitions can overlap, for instance for
poly(dA-dT). We derive analytical formula using a coupled discrete worm like
chain-Ising model. Our model takes into account bending rigidity, discreteness
of the chain, linear and non-linear (for ssDNA) bond stretching. In the limit
of zero force, this model simplifies into a coupled model already developed by
us for studying thermal DNA melting, establishing a connexion with previous
fitting parameter values for denaturation profiles. We find that: (i) ssDNA is
fitted, using an analytical formula, over a nanoNewton range with only three
free parameters, the contour length, the bending modulus and the monomer size;
(ii) a surprisingly good fit on this force range is possible only by choosing a
monomer size of 0.2 nm, almost 4 times smaller than the ssDNA nucleobase
length; (iii) mesoscopic models are not able to fit B to ssDNA (or S to ss)
transitions; (iv) an analytical formula for fitting B to S transitions is
derived in the strong force approximation and for long DNAs, which is in
excellent agreement with exact transfer matrix calculations; (v) this formula
fits perfectly well poly(dG-dC) and -DNA force-extension curves with
consistent parameter values; (vi) a coherent picture, where S to ssDNA
transitions are much more sensitive to base-pair sequence than the B to S one,
emerges.Comment: 14 pages, 9 figure
Conformational dynamics and internal friction in homopolymer globules: equilibrium vs. non-equilibrium simulations
We study the conformational dynamics within homopolymer globules by solvent-implicit Brownian dynamics simulations. A strong dependence of the internal chain dynamics on the Lennard-Jones cohesion strength Δ and the globule size N [subscript G] is observed. We find two distinct dynamical regimes: a liquid-like regime (for Δ Δ[subscript s] with slow internal dynamics. The cohesion strength Δ[subscript s] of this freezing transition depends on N G . Equilibrium simulations, where we investigate the diffusional chain dynamics within the globule, are compared with non-equilibrium simulations, where we unfold the globule by pulling the chain ends with prescribed velocity (encompassing low enough velocities so that the linear-response, viscous regime is reached). From both simulation protocols we derive the internal viscosity within the globule. In the liquid-like regime the internal friction increases continuously with Δ and scales extensive in N [subscript G] . This suggests an internal friction scenario where the entire chain (or an extensive fraction thereof) takes part in conformational reorganization of the globular structure.American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi
Nitrogen-Doped Carbon Electrodes: Influence of Microstructure and Nitrogen Configuration on the Electrical Conductivity of Carbonized Polyacrylonitrile and Poly(ionic liquid) Blends
In this paper, the preparation of nitrogen-doped carbon fibers and thin films from mixtures of polyacrylonitrile (PAN) and a poly(ionic liquid) (PIL) by electrospinning and dip-coating is presented, respectively, followed by carbonization at distinct temperatures. The poor processability of the PIL into sub-micrometer fibers by electrospinningâoriginating from its high charge density and meanwhile low glass transition temperatureâis successfully circumvented by using blends of PAN and PIL. The electrospun fiber mats exhibit a high surface-to-volume-ratio with an intrinsically macroporous through-pore structure and a uniform fiber diameter after carbonization. Physicochemical characterization of the N-doped carbons by means of scanning electron microscopy, algorithmic X-Ray diffraction analysis, nitrogen physisorption, thermogravimetry, elemental analysis, energy-dispersive X-ray, and X-ray photoelectron spectroscopy gives insight into their physical and electrical structures. Impedance measurements on carbonized PIL/PAN-blends reveal high electrical conductivities up to 320 S cmâ1, which are attributed to the incorporation of predominantly quaternary-graphitic nitrogen atoms into the carbon network during carbonization. The results indicate that the electrical conductance of the N-doped carbons strongly depends on the chemical environment of the inserted nitrogen atoms, the microstructural evolution of Ï-conjugated carbon networkâwhich in turn correlate with the carbonization temperatureâand the chemical composition
Mesoporous CuFeâOâ Photoanodes for Solar Water Oxidation: Impact of Surface Morphology on the Photoelectrochemical Properties
Metal oxideâbased photoelectrodes for solar water splitting often utilize nanostructures to increase the solidâliquid interface area. This reduces charge transport distances and increases the photocurrent for materials with short minority charge carrier diffusion lengths. While the merits of nanostructuring are well established, the effect of surface order on the photocurrent and carrier recombination has not yet received much attention in the literature. To evaluate the impact of pore ordering on the photoelectrochemical properties, mesoporous CuFeâOâ (CFO) thin film photoanodes were prepared by dipâcoating and softâtemplating. Here, the pore order and geometry can be controlled by addition of copolymer surfactants poly(ethylene oxide)âblockâpoly(propylene oxide)âblockâpoly(ethylene oxide) (PluronicÂź Fâ127), polyisobutyleneâblockâpoly(ethylene oxide) (PIBâPEO) and poly(ethyleneâcoâbutylene)âblockâpoly(ethylene oxide) (Kraton liquidâąâPEO, KLE). The nonâordered CFO showed the highest photocurrent density of 0.2 mA/cmÂČ at 1.3 V vs. RHE for sulfite oxidation, but the least photocurrent density for water oxidation. Conversely, the ordered CFO presented the best photoelectrochemical water oxidation performance. These differences can be understood on the basis of the high surface area, which promotes hole transfer to sulfite (a fast hole acceptor), but retards oxidation of water (a slow hole acceptor) due to electronâhole recombination at the defective surface. This interpretation is confirmed by intensityâmodulated photocurrent (IMPS) and vibrating Kelvin probe surface photovoltage spectroscopy (VKPâSPS). The lowest surface recombination rate was observed for the ordered KLEâbased mesoporous CFO, which retains spherical pore shapes at the surface resulting in fewer surface defects. Overall, this work shows that the photoelectrochemical energy conversion efficiency of copper ferrite thin films is not just controlled by the surface area, but also by surface order
Mesoporous CuFeâOâ Photoanodes for Solar Water Oxidation: Impact of Surface Morphology on the Photoelectrochemical Properties
Metal oxideâbased photoelectrodes for solar water splitting often utilize nanostructures to increase the solidâliquid interface area. This reduces charge transport distances and increases the photocurrent for materials with short minority charge carrier diffusion lengths. While the merits of nanostructuring are well established, the effect of surface order on the photocurrent and carrier recombination has not yet received much attention in the literature. To evaluate the impact of pore ordering on the photoelectrochemical properties, mesoporous CuFeâOâ (CFO) thin film photoanodes were prepared by dipâcoating and softâtemplating. Here, the pore order and geometry can be controlled by addition of copolymer surfactants poly(ethylene oxide)âblockâpoly(propylene oxide)âblockâpoly(ethylene oxide) (PluronicÂź Fâ127), polyisobutyleneâblockâpoly(ethylene oxide) (PIBâPEO) and poly(ethyleneâcoâbutylene)âblockâpoly(ethylene oxide) (Kraton liquidâąâPEO, KLE). The nonâordered CFO showed the highest photocurrent density of 0.2 mA/cmÂČ at 1.3 V vs. RHE for sulfite oxidation, but the least photocurrent density for water oxidation. Conversely, the ordered CFO presented the best photoelectrochemical water oxidation performance. These differences can be understood on the basis of the high surface area, which promotes hole transfer to sulfite (a fast hole acceptor), but retards oxidation of water (a slow hole acceptor) due to electronâhole recombination at the defective surface. This interpretation is confirmed by intensityâmodulated photocurrent (IMPS) and vibrating Kelvin probe surface photovoltage spectroscopy (VKPâSPS). The lowest surface recombination rate was observed for the ordered KLEâbased mesoporous CFO, which retains spherical pore shapes at the surface resulting in fewer surface defects. Overall, this work shows that the photoelectrochemical energy conversion efficiency of copper ferrite thin films is not just controlled by the surface area, but also by surface order