9 research outputs found
Expression Profiling of CYP1B1 in Oral Squamous Cell Carcinoma: Counterintuitive Downregulation in Tumors
Oral Squamous Cell Carcinoma (OSCC) has a very flagitious treatment regime. A prodrug approach is thought to aid in targeting chemotherapy. CYP1B1, a member of cytochrome P450 family, has been implicated in chemical carcinogenesis. There exists a general accordance that this protein is overexpressed in a variety of cancers, making it an ideal candidate for a prodrug therapy. The activation of the prodrug facilitated by CYP1B1 would enable the targeting of chemotherapy to tumor tissues in which CYP1B1 is specifically overexpressed as a result reducing the non-specific side effects that the current chemotherapy elicits. This study was aimed at validating the use of CYP1B1 as a target for the prodrug therapy in OSCC. The expression profile of CYP1B1 was analysed in a panel of 51 OSCC tumors, their corresponding normal tissues, an epithelial dysplasia lesion and its matched normal tissue by qRT-PCR, Western blotting and Immunohistochemistry. CYP1B1 was found to be downregulated in 77.78% (28/36) tumor tissues in comparison to their corresponding normal tissues as well as in the epithelial dysplasia lesion compared to its matched normal tissue at the transcriptional level, and in 92.86% (26/28) of tumor tissues at the protein level. This report therefore clearly demonstrates the downregulation of CYP1B1 at the transcriptional and translational levels in tumor tissues in comparison to their corresponding normal tissues. These observations indicate that caution should be observed as this therapy may not be applicable universally to all cancers and also suggest the possibility of a prophylactic therapy for oral cancer
Case–control study and meta-analysis of SULT1A1 Arg213His polymorphism for gene, ethnicity and environment interaction for cancer risk
Cytosolic sulphotransferase SULT1A1 plays a dual role in the activation of some carcinogens and inactivation of others. A functional polymorphism leading to Arg213His substitution (SULT1A1*2) affects its catalytic activity and thermostability. To study the association of SULT1A1*2 polymorphism with tobacco-related cancers (TRCs), a case–control study comprising 132 patients with multiple primary neoplasm (MPN) involving TRC and 198 cancer-free controls was carried out. One hundred and thirteen MPN patients had at least one cancer in upper aerodigestive tract including lung (UADT-MPN). SULT1A1*2 showed significant risk association with UADT-MPN (odds ratio (OR)=5.50, 95% confidence interval (CI): 1.09, 27.7). Meta-analysis was conducted combining the data with 34 published studies that included 11 962 cancer cases and 14 673 controls in diverse cancers. The SULT1A1*2 revealed contrasting risk association for UADT cancers (OR=1.62, 95% CI: 1.12, 2.34) and genitourinary cancers (OR=0.73, 95% CI: 0.58, 0.92). Furthermore, although SULT1A1*2 conferred significant increased risk of breast cancer to Asian women (OR=1.91, 95% CI: 1.08, 3.40), it did not confer increased risk to Caucasian women (OR=0.92, 95% CI: 0.71, 1.18). Thus risk for different cancers in distinct ethnic groups could be modulated by interaction between genetic variants and different endogenous and exogenous carcinogens