8 research outputs found

    Nucleoside triphosphate pattern of avian embryonic red cells: role of RNA degradation and AMP deaminase/5'-nucleotidase activity

    No full text
    During terminal erythroid differentiation, degradation of RNA is a potential source for nucleotide triphosphates (NTPs) that act as allosteric effectors of hemoglobin. In this investigation, we assessed the developmental profile of RNA and purine/pyrimidine trinucleotides in circulating embryonic chick red blood cells (RBC). Extensive changes of the NTP pattern are observed which differ significantly from what is observed for adult RBC. The biochemical mechanisms have not been identified yet. Therefore, we studied the role of AMP deaminase and IMP/GMP 5'-nucleotidase, which are key enzymes for the regulation of the purine nucleotide pool. Finally, we tested the effect of major NTPs on the oxygen affinity of embryonic/adult hemoglobin. The results are as follows. 1) Together with ATP, UTP and CTP serve as allosteric effectors of hemoglobin. 2) Degradation of erythroid RNA is apparently a major source for NTPs. 3) Developmental changes of nucleotide content depend on the activities of key enzymes (AMP deaminase, IMP/GMP 5'-nucleotidase, and pyrimidine 5'-nucleotidase). 4) Oxygen-dependent hormonal regulation of AMP deaminase adjusts the red cell ATP concentration and therefore the hemoglobin oxygen affinity

    Substrate cycles and drug resistance to 1-beta-D-arabinofuranosylcytosine (araC)

    Get PDF
    Acute myelogenous leukemia (AML) is the most common form of acute leukemia in adults. After diagnosis, patients with AML are mainly treated with standard induction chemotherapy combining cytarabine (araC) and anthracyclines. The majority of them achieve complete remission (CR) (65-80%). However, prospects for long-term survival are poor for the majority of patients. Resistance to chemotherapy therefore remains a major obstacle in the effective treatment of patients with AML. In this review, we highlight the current knowledge of substrate cycles involved in normal deoxynucleoside triphosphate (dNTPs) metabolism and their possible role in drug resistance to araC. © 2005 Taylor & Francis Group Ltd.Fil: Fernandez Calotti, Paula. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Jordheim, Lars Petter. Université Claude Bernard Lyon 1; FranciaFil: Giordano, Mirta Nilda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Dumontet, Charles. Université Claude Bernard Lyon 1; FranciaFil: Galmarini, Carlos Maria. Université Claude Bernard Lyon 1; Franci

    Nucleoside analogues: mechanisms of drug resistance and reversal strategies

    No full text
    corecore