1,035 research outputs found
A multidomain enzyme, with glycerol-3-phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in \u3ci\u3eChlamydomonas reinhardtii\u3c/i\u3e
Understanding the unique features of algal metabolism may be necessary to realize the full potential of algae as feedstock for the production of biofuels and biomaterials. Under nitrogen deprivation, the green alga C. reinhardtii showed substantial triacylglycerol (TAG) accumulation and up-regulation of a gene, GPD2, encoding a multidomain enzyme with a putative phosphoserine phosphatase (PSP) motif fused to glycerol-3-phosphate dehydrogenase (GPD) domains. Canonical GPD enzymes catalyze the synthesis of glycerol-3-phosphate (G3P) by reduction of dihydroxyacetone phosphate (DHAP). G3P forms the backbone of TAGs and membrane glycerolipids and it can be dephosphorylated to yield glycerol, an osmotic stabilizer and compatible solute under hypertonic stress. Recombinant Chlamydomonas GPD2 showed both reductase and phosphatase activities in vitro and it can work as a bifunctional enzyme capable of synthesizing glycerol directly from DHAP. In addition, GPD2 and a gene encoding glycerol kinase were up-regulated in Chlamydomonas cells exposed to high salinity. RNAmediated silencing of GPD2 revealed that the multidomain enzyme was required for TAG accumulation under nitrogen deprivation and for glycerol synthesis under high salinity. Moreover, a GPD2-mCherry fusion protein was found to localize to the chloroplast, supporting the existence of a GPD2-dependent plastid pathway for the rapid synthesis of glycerol in response to hyperosmotic stress. We hypothesize that the reductase and phosphatase activities of PSP-GPD multidomain enzymes may be modulated by post-translational modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on environmental conditions and/or metabolic demands in algal species of the core Chlorophytes
A multidomain enzyme, with glycerol-3-phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in \u3ci\u3eChlamydomonas reinhardtii\u3c/i\u3e
Understanding the unique features of algal metabolism may be necessary to realize the full potential of algae as feedstock for the production of biofuels and biomaterials. Under nitrogen deprivation, the green alga C. reinhardtii showed substantial triacylglycerol (TAG) accumulation and up-regulation of a gene, GPD2, encoding a multidomain enzyme with a putative phosphoserine phosphatase (PSP) motif fused to glycerol-3-phosphate dehydrogenase (GPD) domains. Canonical GPD enzymes catalyze the synthesis of glycerol-3-phosphate (G3P) by reduction of dihydroxyacetone phosphate (DHAP). G3P forms the backbone of TAGs and membrane glycerolipids and it can be dephosphorylated to yield glycerol, an osmotic stabilizer and compatible solute under hypertonic stress. Recombinant Chlamydomonas GPD2 showed both reductase and phosphatase activities in vitro and it can work as a bifunctional enzyme capable of synthesizing glycerol directly from DHAP. In addition, GPD2 and a gene encoding glycerol kinase were up-regulated in Chlamydomonas cells exposed to high salinity. RNAmediated silencing of GPD2 revealed that the multidomain enzyme was required for TAG accumulation under nitrogen deprivation and for glycerol synthesis under high salinity. Moreover, a GPD2-mCherry fusion protein was found to localize to the chloroplast, supporting the existence of a GPD2-dependent plastid pathway for the rapid synthesis of glycerol in response to hyperosmotic stress. We hypothesize that the reductase and phosphatase activities of PSP-GPD multidomain enzymes may be modulated by post-translational modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on environmental conditions and/or metabolic demands in algal species of the core Chlorophytes
Dynamic screening of a localized hole during photoemission from a metal cluster
Recent advances in attosecond spectroscopy techniques have fueled the
interest in the theoretical description of electronic processes taking place in
the subfemtosecond time scale. Here we study the coupled dynamic screening of a
localized hole and a photoelectron emitted from a metal cluster using a
semi-classical model. Electron density dynamics in the cluster is calculated
with Time-Dependent Density Functional Theory and the motion of the
photoemitted electron is described classically. We show that the dynamic
screening of the hole by the cluster electrons affects the motion of the
photoemitted electron. At the very beginning of its trajectory, the
photoemitted electron interacts with the cluster electrons that pile up to
screen the hole. Within our model, this gives rise to a significant reduction
of the energy lost by the photoelectron. Thus, this is a velocity dependent
effect that should be accounted for when calculating the average losses
suffered by photoemitted electrons in metals.Comment: 15 pages, 5 figure
Assessing the trophic ecology of three sympatric squid in the marine ecosystem off the Patagonian Shelf by combining stomach content and stable isotopic analyses
Squid species are important components of the Southern Atlantic Ocean ecosystems, as they
prey on a wide range of crustaceans, fish and cephalopods. As a result of this trophic
interaction and their high abundance, they are considered reliable indicators of energy
transfer and biomass in the food web. We identified Illex argentinus, Doryteuthis gahi and
Onykia ingens as the most important squid species interacting on the Patagonian shelf, and
used isotope analysis and stomach content identification to assess the feeding ecology and
interaction of these squids in the ecosystem. Our results describe trophic interactions by
direct predation of O. ingens and I. argentinus on D. gahi, and a trophic overlap of the three
squid, and indicate a higher trophic level and differences in the foraging areas for mature
and maturing D. gahi inferred through δ15N and δ13C concentrations. These differences were
related to the segregation and different habitat of large mature D. gahi and suggest a food
enrichment of C and N based on feeding sources other than those used by small maturing
D. gahi and I. argentinus and O. ingens.Versión del editor1,484
Takotsubo cardiomyopathy after a dancing session: a case report
<p>Abstract</p> <p>Introduction</p> <p>Stress-induced (Takotsubo) cardiomyopathy is a rare form of cardiomyopathy which presents in a manner similar to that of acute coronary syndrome. This sometimes leads to unnecessary thrombolysis therapy. The pathogenesis of this disease is still poorly understood. We believe that reporting all cases of Takotsubo cardiomyopathy will contribute to a better understanding of this disease. Here, we report a patient who, in the absence of any recent stressful events in her life, developed the disease after a session of dancing.</p> <p>Case presentation</p> <p>A 69-year-old Caucasian woman presented with features suggestive of acute coronary syndrome shortly after a session of dancing. Echocardiography and a coronary angiogram showed typical features of Takotsubo cardiomyopathy and our patient was treated accordingly. Eight weeks later, her condition resolved completely and the results of echocardiography were totally normal.</p> <p>Conclusions</p> <p>Takotsubo cardiomyopathy, though transient, is a rare and serious condition. Although it is commonly precipitated by stressful life events, these are not necessarily present. Our patient was enjoying one of her hobbies (that is, dancing) when she developed the disease. This case has particular interest in medicine, especially for the specialties of cardiology and emergency medicine. We hope that it will add more information to the literature about this rare condition.</p
Modelling the cascade of biomarker changes in GRN-related frontotemporal dementia
OBJECTIVE: Progranulin-related frontotemporal dementia (FTD-GRN) is a fast progressive disease. Modelling the cascade of multimodal biomarker changes aids in understanding the aetiology of this disease and enables monitoring of individual mutation carriers. In this cross-sectional study, we estimated the temporal cascade of biomarker changes for FTD-GRN, in a data-driven way. METHODS: We included 56 presymptomatic and 35 symptomatic GRN mutation carriers, and 35 healthy non-carriers. Selected biomarkers were neurofilament light chain (NfL), grey matter volume, white matter microstructure and cognitive domains. We used discriminative event-based modelling to infer the cascade of biomarker changes in FTD-GRN and estimated individual disease severity through cross-validation. We derived the biomarker cascades in non-fluent variant primary progressive aphasia (nfvPPA) and behavioural variant FTD (bvFTD) to understand the differences between these phenotypes. RESULTS: Language functioning and NfL were the earliest abnormal biomarkers in FTD-GRN. White matter tracts were affected before grey matter volume, and the left hemisphere degenerated before the right. Based on individual disease severities, presymptomatic carriers could be delineated from symptomatic carriers with a sensitivity of 100% and specificity of 96.1%. The estimated disease severity strongly correlated with functional severity in nfvPPA, but not in bvFTD. In addition, the biomarker cascade in bvFTD showed more uncertainty than nfvPPA. CONCLUSION: Degeneration of axons and language deficits are indicated to be the earliest biomarkers in FTD-GRN, with bvFTD being more heterogeneous in disease progression than nfvPPA. Our data-driven model could help identify presymptomatic GRN mutation carriers at risk of conversion to the clinical stage
Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus marmoratus
Coastal lagoons are semi-isolated ecosystems
exposed to wide fluctuations of environmental conditions
and showing habitat fragmentation. These features may
play an important role in separating species into different
populations, even at small spatial scales. In this study, we
evaluate the concordance between mitochondrial (previous
published data) and nuclear data analyzing the genetic
variability of Pomatoschistus marmoratus in five localities,
inside and outside the Mar Menor coastal lagoon (SE
Spain) using eight microsatellites. High genetic diversity
and similar levels of allele richness were observed across
all loci and localities, although significant genic and
genotypic differentiation was found between populations
inside and outside the lagoon. In contrast to the FST values
obtained from previous mitochondrial DNA analyses
(control region), the microsatellite data exhibited significant
differentiation among samples inside the Mar Menor
and between lagoonal and marine samples. This pattern
was corroborated using Cavalli-Sforza genetic distances.
The habitat fragmentation inside the coastal lagoon and
among lagoon and marine localities could be acting as a
barrier to gene flow and contributing to the observed
genetic structure. Our results from generalized additive
models point a significant link between extreme lagoonal
environmental conditions (mainly maximum salinity) and
P. marmoratus genetic composition. Thereby, these environmental
features could be also acting on genetic structure
of coastal lagoon populations of P. marmoratus favoring
their genetic divergence. The mating strategy of P. marmoratus
could be also influencing our results obtained from
mitochondrial and nuclear DNA. Therefore, a special
consideration must be done in the selection of the DNA
markers depending on the reproductive strategy of the
species
- …