1,015 research outputs found
Reductions in connectivity and habitat quality drive local extinctions in a plant diversity hotspot
It is well documented that habitat loss is a major cause of biodiversity decline. However, the roles of the different aspects of habitat loss in local extinctions are less understood. Anthropogenic destruction of an area of habitat causes immediate local extinction but subsequently three additional gradual drivers influence the likelihood of delayed extinction: decreased habitat patch size, lower connectivity and habitat deterioration. We investigated the role of these drivers in local extinctions of 82 declining species in a UK biodiversity hotspot. We combined a unique set of ≈7000 vegetation surveys and habitat maps from the 1930s with contemporary species’ occurrences. We extrapolated from these surveys to the whole 2500-km2 study area using habitat suitability surfaces. The strengths of drivers in explaining local extinctions over this 70 year period were determined by contrasting connectivity, patch size and habitat quality loss for locations at which a species went extinct and those with persisting occurrences. Species’ occurrences declined on average by 60%, with half of local extinctions attributable to immediate habitat loss and half to the gradual processes causing delayed extinctions. On average, locations where a species persisted had a 73% higher contemporary connectivity than those suffering extinctions, but showed no differences in historical connectivity. Furthermore, locations with extinctions experienced a 37% greater decline in suitability associated with changes in habitat type. The strength of the drivers and the proportion of extinctions depended on the species’ habitat specialism, but were affected only minimally by life-history characteristics. In conclusion, we identified a hierarchy of drivers influencing local extinction: with connectivity loss being the strongest, suitability change being moderately important, but changes in habitat patch size having only weak effects. We suggest conservation efforts could be most effective by strengthening connectivity along with reducing habitat deterioration, which would benefit a wide range of species
Numerical Study of Competing Spin-Glass and Ferromagnetic Order
Two and three dimensional random Ising models with a Gaussian distribution of
couplings with variance and non-vanishing mean value are studied
using the zero-temperature domain-wall renormalization group (DWRG). The DWRG
trajectories in the () plane after rescaling can be collapsed on two
curves: one for and other for . In the first case
the DWRG flows are toward the ferromagnetic fixed point both in two and three
dimensions while in the second case flows are towards a paramagnetic fixed
point and spin-glass fixed point in two and three dimensions respectively. No
evidence for an extra phase is found.Comment: a bit more data is taken, 5 pages, 4 eps figures included, to appear
in PR
Glassy Vortex State in a Two-Dimensional Disordered XY-Model
The two-dimensional XY-model with random phase-shifts on bonds is studied.
The analysis is based on a renormalization group for the replicated system. The
model is shown to have an ordered phase with quasi long-range order. This
ordered phase consists of a glass-like region at lower temperatures and of a
non-glassy region at higher temperatures. The transition from the disordered
phase into the ordered phase is not reentrant and is of a new universality
class at zero temperature. In contrast to previous approaches the disorder
strength is found to be renormalized to larger values. Several correlation
functions are calculated for the ordered phase. They allow to identify not only
the transition into the glassy phase but also an additional crossover line,
where the disconnected vortex correlation changes its behavior on large scales
non-analytically. The renormalization group approach yields the glassy features
without a breaking of replica symmetry.Comment: latex 12 pages with 3 figures, using epsf.sty and multicol.st
Effective interaction between helical bio-molecules
The effective interaction between two parallel strands of helical
bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using
computer simulations of the "primitive" model of electrolytes. In particular we
study a simple model for B-DNA incorporating explicitly its charge pattern as a
double-helix structure. The effective force and the effective torque exerted
onto the molecules depend on the central distance and on the relative
orientation. The contributions of nonlinear screening by monovalent counterions
to these forces and torques are analyzed and calculated for different salt
concentrations. As a result, we find that the sign of the force depends
sensitively on the relative orientation. For intermolecular distances smaller
than it can be both attractive and repulsive. Furthermore we report a
nonmonotonic behaviour of the effective force for increasing salt
concentration. Both features cannot be described within linear screening
theories. For large distances, on the other hand, the results agree with linear
screening theories provided the charge of the bio-molecules is suitably
renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog
Properties of heavy quarkonia and B_c mesons in the relativistic quark model
The mass spectra and electromagnetic decay rates of charmonium, bottomonium
and B_c mesons are comprehensively investigated in the relativistic quark
model. The presence of only heavy quarks allows the expansion in powers of
their velocities. All relativistic corrections of order v^2/c^2, including
retardation effects and one-loop radiative corrections, are systematically
taken into account in the computations of the mass spectra. The obtained wave
functions are used for the calculation of radiative magnetic dipole (M1) and
electric dipole (E1) transitions. It is found that relativistic effects play a
substantial role. Their account and the proper choice of the Lorentz structure
of the quark-antiquark interaction in a meson is crucial for bringing
theoretical predictions in accord with experimental data. A detailed comparison
of the calculated decay rates and branching fractions with available
experimental data for radiative decays of charmonium and bottomonium is
presented. The possibilities to observe the currently missing spin-singlet S
and P states as well as D states in bottomonium are discussed. The results for
B_c masses and decays are compared with other quark model predictions.Comment: 31 pages, 2 figures, minor correction
Accretion, Outflows, and Winds of Magnetized Stars
Many types of stars have strong magnetic fields that can dynamically
influence the flow of circumstellar matter. In stars with accretion disks, the
stellar magnetic field can truncate the inner disk and determine the paths that
matter can take to flow onto the star. These paths are different in stars with
different magnetospheres and periods of rotation. External field lines of the
magnetosphere may inflate and produce favorable conditions for outflows from
the disk-magnetosphere boundary. Outflows can be particularly strong in the
propeller regime, wherein a star rotates more rapidly than the inner disk.
Outflows may also form at the disk-magnetosphere boundary of slowly rotating
stars, if the magnetosphere is compressed by the accreting matter. In isolated,
strongly magnetized stars, the magnetic field can influence formation and/or
propagation of stellar wind outflows. Winds from low-mass, solar-type stars may
be either thermally or magnetically driven, while winds from massive, luminous
O and B type stars are radiatively driven. In all of these cases, the magnetic
field influences matter flow from the stars and determines many observational
properties. In this chapter we review recent studies of accretion, outflows,
and winds of magnetized stars with a focus on three main topics: (1) accretion
onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and
(3) winds from isolated massive magnetized stars. We show results obtained from
global magnetohydrodynamic simulations and, in a number of cases compare global
simulations with observations.Comment: 60 pages, 44 figure
You are smarter than you think: (super) machine learning in context
We discuss an article on super learning by Naimi and Balzer in the current issue of this journal in the context of machine learning. We give a brief example that emphasizes the need for human intelligence in the rapidly evolving field of machine learning
Study of the Process e+ e- --> omega pi0 --> pi0 pi0 gamma in c.m. Energy Range 920--1380 MeV at CMD-2
The cross section of the process e+ e- --> omega pi0 --> pi0 pi0 gamma has
been measured in the c.m. energy range 920-1380 MeV with the CMD-2 detector.
Its energy dependence is well described by the interference of the rho(770) and
rho'(1450) mesons decaying to omega pi0. Upper limits for the cross sections of
the direct processes e+ e- --> pi0 pi0 gamma, eta pi0 gamma have been set.Comment: Accepted for publication in PL
Measurement Error and Environmental Epidemiology: a Policy Perspective
PURPOSE OF REVIEW: Measurement error threatens public health by producing bias in estimates of the population impact of environmental exposures. Quantitative methods to account for measurement bias can improve public health decision making.RECENT FINDINGS: We summarize traditional and emerging methods to improve inference under a standard perspective, in which the investigator estimates an exposure-response function, and a policy perspective, in which the investigator directly estimates population impact of a proposed intervention. Under a policy perspective, the analyst must be sensitive to errors in measurement of factors that modify the effect of exposure on outcome, must consider whether policies operate on the true or measured exposures, and may increasingly need to account for potentially dependent measurement error of two or more exposures affected by the same policy or intervention. Incorporating approaches to account for measurement error into such a policy perspective will increase the impact of environmental epidemiology
Production of Pairs Accompanied by Nuclear Dissociation in Ultra-Peripheral Heavy Ion Collision
We present the first data on pair production accompanied by nuclear
breakup in ultra-peripheral gold-gold collisions at a center of mass energy of
200 GeV per nucleon pair. The nuclear breakup requirement selects events at
small impact parameters, where higher-order corrections to the pair production
cross section should be enhanced. We compare the pair kinematic distributions
with two calculations: one based on the equivalent photon approximation, and
the other using lowest-order quantum electrodynamics (QED); the latter includes
the photon virtuality. The cross section, pair mass, rapidity and angular
distributions are in good agreement with both calculations. The pair transverse
momentum, , spectrum agrees with the QED calculation, but not with the
equivalent photon approach. We set limits on higher-order contributions to the
cross section. The and spectra are similar, with no evidence
for interference effects due to higher-order diagrams.Comment: 6 pages with 3 figures Slightly modified version that will appear in
Phys. Rev.
- …
