288 research outputs found

    Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona

    Get PDF
    S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements

    NEW DEVELOPMENTS IN GASEOUS FERRITIC NITROCARBURISING BY USING HYDROCARBON GASES

    Get PDF
    Industrial gaseous ferritic nitrocarburising processes, or shortly named „fnc“, use mainly carbon dioxide or endothermic gas as the carbon providing gas in addition to ammonia gas. Both processes have positive and negative aspects and produce somewhat different layer structures. The carbon dioxide fnc process depicts a faster layer growth yielding a thicker and more porous nitride layer, whereas the endothermic fnc process produces a nitride layer with higher carbon content and a larger proportion of the å-nitride phase. A newer variant of a fnc process uses hydrocarbons, and preferably propane or natural gas, as carbon providing gas replacing partly or totally carbon dioxide gas. This newer process uses different single or double step cycles combining the advantages of the enhanced nitrogen transfer as created by the carbon dioxide variant with the increased carbon transfer rate of the endothermic gas. This results in faster layer growth producing nitride layers with higher carbon content and a larger proportion of the å-phase. This is advantageous with respect to wear resistance of the nitrocarburised components. In addition, it improves furnace productivity

    [Letter] Zero emission targets as long-term global goals for climate protection

    Get PDF
    Recently, assessments have robustly linked stabilization of global-mean temperature rise to the necessity of limiting the total amount of emitted carbon-dioxide (CO2). Halting global warming thus requires virtually zero annual CO2 emissions at some point. Policymakers have now incorporated this concept in the negotiating text for a new global climate agreement, but confusion remains about concepts like carbon neutrality, climate neutrality, full decarbonization, and net zero carbon or net zero greenhouse gas (GHG) emissions. Here we clarify these concepts, discuss their appropriateness to serve as a long-term global benchmark for achieving temperature targets, and provide a detailed quantification. We find that with current pledges and for a likely (>66%) chance of staying below 2 °C, the scenario literature suggests net zero CO2 emissions between 2060 and 2070, with net negative CO2 emissions thereafter. Because of residual non-CO2 emissions, net zero is always reached later for total GHG emissions than for CO2. Net zero emissions targets are a useful focal point for policy, linking a global temperature target and socio-economic pathways to a necessary long-term limit on cumulative CO2 emissions

    The flexible heat treatment of automotive components in a novel type of pusher furnace

    Get PDF
    The typical heat treatment processes needed in the automotive industry are hardening and tempering, casehardening,nitrocarburising and various types of annealing. Usually, different types of specialised furnacesare applied to the various processes with each furnace type possessing very little flexibility. An exception isthe sealed quench furnaces, or also called multi-purpose furnaces, which can be used for various heattreatment processes. Their disadvantage is a certain limitation with respect to high productivity in largeseries component production. A continuous pusher furnace e.g. is better adapt for economical large seriesmanufacturing, however, is designed only for single purpose usage. This all has changed with the novelconcept of a pusher furnace, which allows large series production of automotive components and, at thesame time, a switch-over from the hardening and tempering process to case-hardening, or isothermalannealing, or soft annealing, or spheroidizing. The features and technical data of this novel pusher furnacesystem are discussed together with various applications for automotive components

    Storage of Carbon Dioxide in Saline Aquifers: Physicochemical Processes, Key Constraints, and Scale-Up Potential

    Get PDF
    Full text available at: https://www.annualreviews.org/doi/10.1146/annurev-chembioeng-093020-091447CO2 storage in saline aquifers offers a realistic means of achieving globally significant reductions in greenhouse gas emissions at the scale of billions of tonnes per year. We review insights into the processes involved using well-documented industrial-scale projects, supported by a range of laboratory analyses, field studies, and flow simulations. The main topics we address are (a) the significant physicochemical processes, (b) the factors limiting CO2 storage capacity, and (c) the requirements for global scale-up.Although CO2 capture and storage (CCS) technology can be considered mature and proven, it requires significant and rapid scale-up to meet the objectives of the Paris Climate Agreement. The projected growth in the number of CO2 injection wells required is significantly lower than the historic petroleum industry drill rates, indicating that decarbonization via CCS is a highly credible and affordable ambition for modern human society. Several technology developments are needed to reduce deployment costs and to stimulate widespread adoption of this technology, and these should focus on demonstration of long-term retention and safety of CO2 storage and development of smart ways of handling injection wells and pressure, cost-effective monitoring solutions, and deployment of CCS hubs with associated infrastructure.Bureau of Economic Geolog

    Marginalization of end-use technologies in energy innovation for climate protection

    Get PDF
    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies

    Economic damages from on-going climate change imply deeper near-term emission cuts

    Get PDF
    Pathways toward limiting global warming to well below 2 ∘C, as used by the IPCC in the Fifth Assessment Report, do not consider the climate impacts already occurring below 2 ∘C. Here we show that accounting for such damages significantly increases the near-term ambition of transformation pathways. We use econometric estimates of climate damages on GDP growth and explicitly model the uncertainty in the persistence time of damages. The Integrated Assessment Model we use includes the climate system and mitigation technology detail required to derive near-term policies. We find an optimal carbon price of $115 per tonne of CO2 in 2030. The long-term persistence of damages, while highly uncertain, is a main driver of the near-term carbon price. Accounting for damages on economic growth increases the gap between the currently pledged nationally determined contributions and the welfare-optimal 2030 emissions by two thirds, compared to pathways considering the 2 ∘C limit only
    corecore