1,923 research outputs found
Arbitrage: the key to pricing options
Arbitrage has become associated in popular attitudes with the most ruthless and profit-driven of human impulses, but the opposite reputation might be more well-deserved. The ability to arbitrage is essential for the efficient operation of markets. An interesting application of the principle of arbitrage arose when it provided the breakthrough insight in economists’ solution to a formerly intractable problem: how to properly price the emergent financial instruments known as options.Arbitrage ; Options (Finance)
Hyperalphalipoproteinaemia in Chinese is associated with a reduction in cholesteryl ester transfer protein activity
published_or_final_versio
Simulation and Measurements of HOM Filter of the LARP Prototype RF-Dipole Crabbing Cavity Using an RF Test Box
The RF-Dipole Crabbing Cavity designed for the LHC High Luminosity Upgrade includes two higher order mode (HOM) couplers. One of the HOM couplers is an rf filter, which is a high pass filter designed to couple to the horizontal dipole modes and accelerating modes up to 2 GHz, while rejecting the fundamental operating mode at 400 MHz. The coupler consists of a high pass filter circuit where the rejection of the operating mode and transmission of HOMs are sensitive to dimensional deviations. An rf test box has been designed to measure the transmission of the rf filter in order to qualify the fabricated HOM coupler and to tune the coupler. This paper presents the measurements of the HOM coupler with the rf test box
Design of a Proof-of-Principle Crabbing Cavity for the Jefferson Lab Electron-Ion Collider
The Jefferson Lab design for an electron-ion collider (JLEIC) requires crabbing of the electron and ion beams in order to achieve the design luminosity. A number of options for the crabbing cavities have been explored, and the one which has been selected for the proof-of-principle is a 952 MHz, 2-cell rf-dipole (RFD) cavity. This paper summarizes the electromagnetic design of the cavity and its HOM characteristics
Beam-Beam Effect: Crab Dynamics Calculation in JLEIC
The electron and ion beams of a future Electron Ion Collider (EIC) must collide at an angle for detection, machine and engineering design reasons. To avoid associated luminosity reduction, a local crabbing scheme is used where each beam is crabbed before collision and de-crabbed after collision. The crab crossing scheme then provides a head-on collision for beams with a non-zero crossing angle. We develop a framework for accurate simulation of crabbing dynamics with beam-beam effects by combining symplectic particle tracking codes with a beam-beam model based on the Bassetti-Erskine analytic solution. We present simulation results using our implementation of such a framework where the beam dynamics around the ring is tracked using Elegant and the beam-beam kick is modeled in Python
A Massive Protostar Forming by Ordered Collapse of a Dense, Massive Core
We present 30 and 40 micron imaging of the massive protostar G35.20-0.74 with
SOFIA-FORCAST. The high surface density of the natal core around the protostar
leads to high extinction, even at these relatively long wavelengths, causing
the observed flux to be dominated by that emerging from the near-facing outflow
cavity. However, emission from the far-facing cavity is still clearly detected.
We combine these results with fluxes from the near-infrared to mm to construct
a spectral energy distribution (SED). For isotropic emission the bolometric
luminosity would be 3.3x10^4 Lsun. We perform radiative transfer modeling of a
protostar forming by ordered, symmetric collapse from a massive core bounded by
a clump with high mass surface density, Sigma_cl. To fit the SED requires
protostellar masses ~20-34 Msun depending on the outflow cavity opening angle
(35 - 50 degrees), and Sigma_cl ~ 0.4-1 g cm-2. After accounting for the
foreground extinction and the flashlight effect, the true bolometric luminosity
is ~ (0.7-2.2)x10^5 Lsun. One of these models also has excellent agreement with
the observed intensity profiles along the outflow axis at 10, 18, 31 and 37
microns. Overall our results support a model of massive star formation
involving the relatively ordered, symmetric collapse of a massive, dense core
and the launching bipolar outflows that clear low density cavities. Thus a
unified model may apply for the formation of both low and high mass stars.Comment: 6 pages, 4 figures, 1 table, accepted to Ap
- …