739 research outputs found

    The dopaminergic midbrain participates in human episodic memory formation: Evidence from genetic imaging

    Get PDF
    Recent data from animal studies raise the possibility that dopaminergic neuromodulation promotes the encoding of novel stimuli. We investigated a possible role for the dopaminergic midbrain in human episodic memory by measuring how polymorphisms in dopamine clearance pathways affect encoding-related brain activity (functional magnetic resonance imaging) in an episodic memory task. In 51 young, healthy adults, successful episodic encoding was associated with activation of the substantia nigra. This midbrain activation was modulated by a functional variable number of tandem repeat (VNTR) polymorphism in the dopamine transporter (DAT1) gene. Despite no differences in memory performance between genotype groups, carriers of the (low expressing) 9-repeat allele of the DAT1 VNTR showed relatively higher midbrain activation when compared with subjects homozygous for the 10-repeat allele, who express DAT1 at higher levels. The catechol-O-methyl transferase (COMT) Val108/158Met polymorphism, which is known to modulate enzyme activity, affected encoding-related activity in the right prefrontal cortex (PFC) and in occipital brain regions but not in the midbrain. Moreover, subjects homozygous for the (low activity) Met allele showed stronger functional coupling between the PFC and the hippocampus during encoding. Our finding that genetic variations in the dopamine clearance pathways affect encoding-related activation patterns in midbrain and PFC provides strong support for a role of dopaminergic neuromodulation in human episodic memory formation. It also supports the hypothesis of anatomically and functionally distinct roles for DAT1 and COMT in dopamine metabolism, with DAT1 modulating rapid, phasic midbrain activity and COMT being particularly involved in prefrontal dopamine clearance

    The equation of state for two-dimensional hard-sphere gases: Hard-sphere gases as ideal gases with multi-core boundaries

    Full text link
    The equation of state for a two-dimensional hard-sphere gas is difficult to calculate by usual methods. In this paper we develop an approach for calculating the equation of state of hard-sphere gases, both for two- and three-dimensional cases. By regarding a hard-sphere gas as an ideal gas confined in a container with a multi-core (excluded sphere) boundary, we treat the hard-sphere interaction in an interacting gas as the boundary effect on an ideal quantum gas; this enables us to treat an interacting gas as an ideal one. We calculate the equation of state for a three-dimensional hard-sphere gas with spin jj, and compare it with the results obtained by other methods. By this approach the equation of state for a two-dimensional hard-sphere gas can be calculated directly.Comment: 9 pages, 1 figur

    Crowdsourcing and Human Computation: Systems, Studies and Platforms

    Get PDF
    Crowdsourcing and human computation are transforming human-computer interaction, and CHI has led the way. The seminal publication in human computation was initially published in CHI in 2004 [1], and the first paper investigating Mechanical Turk as a user study platform has amassed over one hundred citations in two years [5]. However, we are just beginning to stake out a coherent research agenda for the field. This workshop will bring together researchers in the young field of crowdsourcing and human computation and produce three artifacts: a research agenda for the field, a vision for ideal crowdsourcing platforms, and a group-edited bibliography. These resources will be publically disseminated on the web and evolved and maintained by the community

    Large-Mass Ultra-Low Noise Germanium Detectors: Performance and Applications in Neutrino and Astroparticle Physics

    Get PDF
    A new type of radiation detector, a p-type modified electrode germanium diode, is presented. The prototype displays, for the first time, a combination of features (mass, energy threshold and background expectation) required for a measurement of coherent neutrino-nucleus scattering in a nuclear reactor experiment. The device hybridizes the mass and energy resolution of a conventional HPGe coaxial gamma spectrometer with the low electronic noise and threshold of a small x-ray semiconductor detector, also displaying an intrinsic ability to distinguish multiple from single-site particle interactions. The present performance of the prototype and possible further improvements are discussed, as well as other applications for this new type of device in neutrino and astroparticle physics (double-beta decay, neutrino magnetic moment and WIMP searches).Comment: submitted to Phys. Rev.

    The trouble with social computing systems research

    Full text link
    Social computing has led to an explosion of research in understanding users, and it has the potential to similarly revolutionize systems research. However, the number of papers designing and building new sociotechnical systems has not kept pace. We analyze challenges facing social computing systems research, ranging from misaligned methodological incentives, evaluation expectations, double standards, and relevance compared to industry. We suggest improvements for the community to consider so that we can chart the future of our field

    An Improved BKW Algorithm for LWE with Applications to Cryptography and Lattices

    Get PDF
    In this paper, we study the Learning With Errors problem and its binary variant, where secrets and errors are binary or taken in a small interval. We introduce a new variant of the Blum, Kalai and Wasserman algorithm, relying on a quantization step that generalizes and fine-tunes modulus switching. In general this new technique yields a significant gain in the constant in front of the exponent in the overall complexity. We illustrate this by solving p within half a day a LWE instance with dimension n = 128, modulus q=n2q = n^2, Gaussian noise α=1/(n/πlog2n)\alpha = 1/(\sqrt{n/\pi} \log^2 n) and binary secret, using 2282^{28} samples, while the previous best result based on BKW claims a time complexity of 2742^{74} with 2602^{60} samples for the same parameters. We then introduce variants of BDD, GapSVP and UniqueSVP, where the target point is required to lie in the fundamental parallelepiped, and show how the previous algorithm is able to solve these variants in subexponential time. Moreover, we also show how the previous algorithm can be used to solve the BinaryLWE problem with n samples in subexponential time 2(ln2/2+o(1))n/loglogn2^{(\ln 2/2+o(1))n/\log \log n}. This analysis does not require any heuristic assumption, contrary to other algebraic approaches; instead, it uses a variant of an idea by Lyubashevsky to generate many samples from a small number of samples. This makes it possible to asymptotically and heuristically break the NTRU cryptosystem in subexponential time (without contradicting its security assumption). We are also able to solve subset sum problems in subexponential time for density o(1)o(1), which is of independent interest: for such density, the previous best algorithm requires exponential time. As a direct application, we can solve in subexponential time the parameters of a cryptosystem based on this problem proposed at TCC 2010.Comment: CRYPTO 201

    Charting the internal landscape: Affect associated with thoughts about major life domains explains life satisfaction

    Get PDF
    Studies of happiness have examined the impact of demographics, personality and emotions accompanying daily activities on life satisfaction. We suggest that how people feel while contemplating aspects of their lives, including their weight, children and future prospects, is a promising yet uncharted territory within the internal landscape of life satisfaction. In a sample of 811 American women, we assessed women’s feelings when thinking about major life domains and frequency of thoughts about each domain. Regression and dominance analyses showed that emotional valence of thoughts about major life domains was an important predictor of current and prior life satisfaction, surpassing, in descending order, demographics, participants’ feelings during recent activities, and their neuroticism and extraversion scores. Domains thought about more frequently were often associated with greater emotional valence. These results suggest that life satisfaction may be improved by modifying emotional valence and frequency of thoughts about life domains. Moreover, these thoughts appear to be an important and relatively stable component of well-being worthy of further study

    RepliCHI - CHI should be replicating and validating results more: discuss

    Get PDF
    PanelInternational audienceThe replication of research findings is a cornerstone of good science. Replication confirms results, strengthens research, and makes sure progress is based on solid foundations. CHI, however, rewards novelty and is focused on new results. As a community, therefore, we do not value, facilitate, or reward replication in research, and often take the significant results of a single user study on 20 users to be true. This panel will address the issues surrounding replication in our community, and discuss: a) how much of our broad diverse discipline is 'science', b) how, if at all, we currently see replication of research in our community, c) whether we should place more emphasis on replication in some form, and d) how that should look in our community. The aim of the panel is to make a proposal to future CHI organizers (2 are on the panel) for how we should facilitate replication in the future
    corecore