29 research outputs found
Transformation Pathways of Silica under High Pressure
Concurrent molecular dynamics simulations and ab initio calculations show
that densification of silica under pressure follows a ubiquitous two-stage
mechanism. First, anions form a close-packed sub-lattice, governed by the
strong repulsion between them. Next, cations redistribute onto the interstices.
In cristobalite silica, the first stage is manifest by the formation of a
metastable phase, which was observed experimentally a decade ago, but never
indexed due to ambiguous diffraction patterns. Our simulations conclusively
reveal its structure and its role in the densification of silica.Comment: 14 pages, 4 figure
Zircon from the East Orebody of the Bayan Obo Fe–Nb–REE deposit, China, and SHRIMP ages for carbonatite-related magmatism and REE mineralization events
Extremely U-depleted
Lightning-Induced Reduction of Phosphorus Oxidation State
Phosphorus is frequently the limiting nutrient in marine and terrestrial ecosystems, largely owing to its poor solubility and slow movement through the rock cycle1, 2. Phosphorus is viewed to exist in geological systems almost exclusively in its fully oxidized state as orthophosphate. However, many microorganisms use the partially oxidized forms—phosphite and hypophosphite—as alternative phosphorus sources3, 4, 5, and genomic evidence suggests that this selectivity is ancient6. Elucidating the processes that reduce phosphate is therefore key to understanding the biological cycling of phosphorus. Here we show that cloud-to-ground lightning reduces phosphate in lightning-derived glass compounds, termed fulgurites. We analysed the phosphorus chemistry of ten fulgurites retrieved from North America, Africa and Australia, using microprobes and 31P nuclear magnetic resonance. Half of the fulgurites contained reduced phosphorus, mainly in the form of phosphite. The amount and type of reduced phosphorus was dependent on the composition of the fulgurite section examined: carbon-rich sections contained around 22% reduced phosphorus in the form of iron phosphide, whereas other fulgurites contained between 37 and 68% in the form of phosphite. We suggest that lightning provides some portion of the reduced phosphorus used by microbes, and that phosphate reduction by lightning can be locally important to phosphorus biogeochemistry