1,258 research outputs found

    Genome-wide signatures of convergent evolution in echolocating mammals

    Get PDF
    Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes(1-3). However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures(4,5). Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level(6-9). Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution(9,10) although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised

    Application of Healthcare 'Big Data' in CNS Drug Research: The Example of the Neurological and mental health Global Epidemiology Network (NeuroGEN)

    Get PDF
    Neurological and psychiatric (mental health) disorders have a large impact on health burden globally. Cognitive disorders (including dementia) and stroke are leading causes of disability. Mental health disorders, including depression, contribute up to one-third of total years lived with disability. The Neurological and mental health Global Epidemiology Network (NeuroGEN) is an international multi-database network that harnesses administrative and electronic medical records from Australia, Asia, Europe and North America. Using these databases NeuroGEN will investigate medication use and health outcomes in neurological and mental health disorders. A key objective of NeuroGEN is to facilitate high-quality observational studies to address evidence-practice gaps where randomized controlled trials do not provide sufficient information on medication benefits and risks that is specific to vulnerable population groups. International multi-database research facilitates comparisons across geographical areas and jurisdictions, increases statistical power to investigate small subpopulations or rare outcomes, permits early post-approval assessment of safety and effectiveness, and increases generalisability of results. Through bringing together international researchers in pharmacoepidemiology, NeuroGEN has the potential to be paradigm-changing for observational research to inform evidence-based prescribing. The first focus of NeuroGEN will be to address evidence-gaps in the treatment of chronic comorbidities in people with dementia

    Survival Differences by Race/Ethnicity and Treatment for Localized Hepatocellular Carcinoma Within the United States

    Get PDF
    Racial differences among hepatocellular carcinoma survival have been reported, but the etiology behind these disparities remains unclear. Using multi-variable logistic regression analysis, our restrospective cohort study investigated the demographic disparities in survival among localized hepatocellular carcinoma in the United States. From 1998 to 2001, 2,776 cases of localized hepatocellular carcinoma were identified. Significant racial/ethnic disparities in overall survival and utilization of therapies were identified. Compared with non-Hispanic white males, black females were 56% less likely to survive 3 years (OR 0.44; 95% CI 0.21–0.93). Treatment-specific models also demonstrated disparities, e.g., compared with non-Hispanic whites, Asians receiving transplantation were 77% more likely to survive 3 years (OR, 1.77; 95% CI 1.28–2.44). There are significant racial/ethnic disparities in 3-year survival among patients with localized hepatocellular carcinoma. These differences are partially explained by demographic differences in utilization of therapy and in stage-specific survival for each therapy

    The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR), which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma.</p> <p>Methods</p> <p>In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism.</p> <p>Results</p> <p>In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses.</p> <p>Conclusions</p> <p>Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.</p

    CLIPR-59 regulates TNF-α-induced apoptosis by controlling ubiquitination of RIP1

    Get PDF
    Tumor necrosis factor-α (TNF-α) has important roles in several immunological events by regulating apoptosis and transcriptional activation of cytokine genes. Intracellular signaling mediated by TNF-receptor-type 1 (TNFR1) is constituted by two sequential protein complexes: Complex-I containing the receptor and Complex-II-containing Caspase-8. Protein modifications, particularly ubiquitination, are associated with the regulation of the formation of these complexes. However, the underlying mechanisms remain poorly defined. Here, we identified CLIP-170-related 59 kDa protein (CLIPR-59) as a novel adaptor protein for TNFR1. Experimental reduction of CLIPR-59 levels prevented induction of apoptosis and activation of caspases in the context of TNF-α signaling. CLIPR-59 binds TNFR1 but dissociates in response to TNF-α stimulation. However, CLIPR-59 is also involved in and needed for the formation of Complex-II. Moreover, CLIPR-59 regulates TNF-α-induced ubiquitination of receptor-interacting protein 1 (RIP1) by its association with CYLD, a de-ubiquitinating enzyme. These findings suggest that CLIPR-59 modulates ubiquitination of RIP1, resulting in the formation of Complex-II and thus promoting Caspase-8 activation to induce apoptosis by TNF-α

    The utility of screening for perinatal depression in the second trimester among Chinese: a three-wave prospective longitudinal study

    Get PDF
    This paper aims to study the pattern of perinatal depressive symptomatology and determine the predictive power of second trimester perinatal depressive symptoms for future perinatal periods. A population-based sample of 2,178 women completed the Edinburgh Postnatal Depression Scale (EPDS) in the second and third trimesters and at 6 weeks postpartum. Repeated measures ANOVAs were used to determine the EPDS scores across three stages. The predictive power of the second trimester EPDS score in identifying women with an elevated EPDS score in the third trimester and at 6 weeks postpartum were determined. The predictive power of the second trimester EPDS score was further assessed using stepwise logistic regression and receiver operator characteristic curves. EPDS scores differed significantly across three stages. The rates were 9.9%, 7.8%, and 8.7% for an EPDS score of >14 in the second and third trimesters and at 6 weeks postpartum, respectively. Using a cut-off of 14/15, the second trimester EPDS score accurately classified 89.6% of women in the third trimester and 87.2% of those at 6 weeks postpartum with or without perinatal depressive symptomatology. Women with a second trimester EPDS score >14 were 11.78 times more likely in the third trimester and 7.15 times more likely at 6 weeks postpartum to exhibit perinatal depressive symptomatology after adjustment of sociodemographic variables. The area under the curve for perinatal depressive symptomatology was 0.85 in the third trimester and 0.77 at 6 weeks postpartum. To identify women at high risk for postpartum depression, healthcare professionals could consider screening all pregnant women in the second trimester so that secondary preventive intervention may be implemented

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Epithelial Cells Derived from Swine Bone Marrow Express Stem Cell Markers and Support Influenza Virus Replication In Vitro

    Get PDF
    The bone marrow contains heterogeneous population of cells that are involved in the regeneration and repair of diseased organs, including the lungs. In this study, we isolated and characterized progenitor epithelial cells from the bone marrow of 4- to 5-week old germ-free pigs. Microscopically, the cultured cells showed epithelial-like morphology. Phenotypically, these cells expressed the stem cell markers octamer-binding transcription factor (Oct4) and stage-specific embryonic antigen-1 (SSEA-1), the alveolar stem cell marker Clara cell secretory protein (Ccsp), and the epithelial cell markers pan-cytokeratin (Pan-K), cytokeratin-18 (K-18), and occludin. When cultured in epithelial cell growth medium, the progenitor epithelial cells expressed type I and type II pneumocyte markers. Next, we examined the susceptibility of these cells to influenza virus. Progenitor epithelial cells expressed sialic acid receptors utilized by avian and mammalian influenza viruses and were targets for influenza virus replication. Additionally, differentiated type II but not type I pneumocytes supported the replication of influenza virus. Our data indicate that we have identified a unique population of progenitor epithelial cells in the bone marrow that might have airway reconstitution potential and may be a useful model for cell-based therapies for infectious and non-infectious lung diseases

    Persistent Infection and Promiscuous Recombination of Multiple Genotypes of an RNA Virus within a Single Host Generate Extensive Diversity

    Get PDF
    Recombination and reassortment of viral genomes are major processes contributing to the creation of new, emerging viruses. These processes are especially significant in long-term persistent infections where multiple viral genotypes co-replicate in a single host, generating abundant genotypic variants, some of which may possess novel host-colonizing and pathogenicity traits. In some plants, successive vegetative propagation of infected tissues and introduction of new genotypes of a virus by vector transmission allows for viral populations to increase in complexity for hundreds of years allowing co-replication and subsequent recombination of the multiple viral genotypes. Using a resequencing microarray, we examined a persistent infection by a Citrus tristeza virus (CTV) complex in citrus, a vegetatively propagated, globally important fruit crop, and found that the complex comprised three major and a number of minor genotypes. Subsequent deep sequencing analysis of the viral population confirmed the presence of the three major CTV genotypes and, in addition, revealed that the minor genotypes consisted of an extraordinarily large number of genetic variants generated by promiscuous recombination between the major genotypes. Further analysis provided evidence that some of the recombinants underwent subsequent divergence, further increasing the genotypic complexity. These data demonstrate that persistent infection of multiple viral genotypes within a host organism is sufficient to drive the large-scale production of viral genetic variants that may evolve into new and emerging viruses
    corecore