158 research outputs found

    Evolutionary History and Population Dynamics of Hepatitis E Virus

    Get PDF
    BACKGROUND: Hepatitis E virus (HEV) is an enterically transmitted hepatropic virus. It segregates as four genotypes. All genotypes infect humans while only genotypes 3 and 4 also infect several animal species. It has been suggested that hepatitis E is zoonotic, but no study has analyzed the evolutionary history of HEV. We present here an analysis of the evolutionary history of HEV. METHODS AND FINDINGS: The times to the most recent common ancestors for all four genotypes of HEV were calculated using BEAST to conduct a Bayesian analysis of HEV. The population dynamics for genotypes 1, 3 and 4 were analyzed using skyline plots. Bayesian analysis showed that the most recent common ancestor for modern HEV existed between 536 and 1344 years ago. The progenitor of HEV appears to have given rise to anthropotropic and enzootic forms of HEV, which evolved into genotypes 1 and 2 and genotypes 3 and 4, respectively. Population dynamics suggest that genotypes 1, 3 and 4 experienced a population expansion during the 20(th) century. Genotype 1 has increased in infected population size ∼30-35 years ago. Genotype 3 and 4 have experienced an increase in population size starting late in the 19(th) century until ca.1940-45, with genotype 3 having undergone additional rapid expansion until ca.1960. The effective population size for both genotype 3 and 4 rapidly declined to pre-expansion levels starting in ca.1990. Genotype 4 was further examined as Chinese and Japanese sequences, which exhibited different population dynamics, suggesting that this genotype experienced different evolutionary history in these two countries. CONCLUSIONS: HEV appears to have evolved through a series of steps, in which the ancestors of HEV may have adapted to a succession of animal hosts leading to humans. Analysis of the population dynamics of HEV suggests a substantial temporal variation in the rate of transmission among HEV genotypes in different geographic regions late in the 20(th) Century

    A Bayesian Approach to Analyse Genetic Variation within RNA Viral Populations

    Get PDF
    The development of modern and affordable sequencing technologies has allowed the study of viral populations to an unprecedented depth. This is of particular interest for the study of within-host RNA viral populations, where variation due to error-prone polymerases can lead to immune escape, antiviral resistance and adaptation to new host species. Methods to sequence RNA virus genomes include reverse transcription (RT) and polymerase chain reaction (PCR). RT-PCR is a molecular biology technique widely used to amplify DNA from an RNA template. The method itself relies on the in vitro synthesis of copy DNA from RNA followed by multiple cycles of DNA amplification. However, this method introduces artefactual errors that can act as confounding factors when the sequence data are analysed. Although there are a growing number of published studies exploring the intra- and inter-host evolutionary dynamics of RNA viruses, the complexity of the methods used to generate sequences makes it difficult to produce probabilistic statements about the likely sources of observed sequence variants. This complexity is further compounded as both the depth of sequencing and the length of the genome segment of interest increase. Here we develop a Bayesian method to characterise and differentiate between likely structures for the background viral population. This approach can then be used to identify nucleotide sites that show evidence of change in the within-host viral population structure, either over time or relative to a reference sequence (e.g. an inoculum or another source of infection), or both, without having to build complex evolutionary models. Identification of these sites can help to inform the design of more focussed experiments using molecular biology tools, such as site-directed mutagenesis, to assess the function of specific amino acids. We illustrate the method by applying to datasets from experimental transmission of equine influenza, and a pre-clinical vaccine trial for HIV-1

    Adaptive Evolution in the Glucose Transporter 4 Gene Slc2a4 in Old World Fruit Bats (Family: Pteropodidae)

    Get PDF
    Frugivorous and nectarivorous bats are able to ingest large quantities of sugar in a short time span while avoiding the potentially adverse side-effects of elevated blood glucose. The glucose transporter 4 protein (GLUT4) encoded by the Slc2a4 gene plays a critical role in transmembrane skeletal muscle glucose uptake and thus glucose homeostasis. To test whether the Slc2a4 gene has undergone adaptive evolution in bats with carbohydrate-rich diets in relation to their insect-eating sister taxa, we sequenced the coding region of the Slc2a4 gene in a number of bat species, including four Old World fruit bats (Pteropodidae) and three New World fruit bats (Phyllostomidae). Our molecular evolutionary analyses revealed evidence that Slc2a4 has undergone a change in selection pressure in Old World fruit bats with 11 amino acid substitutions detected on the ancestral branch, whereas, no positive selection was detected in the New World fruit bats. We noted that in the former group, amino acid replacements were biased towards either Serine or Isoleucine, and, of the 11 changes, six were specific to Old World fruit bats (A133S, A164S, V377F, V386I, V441I and G459S). Our study presents preliminary evidence that the Slc2a4 gene has undergone adaptive changes in Old World fruit bats in relation to their ability to meet the demands of a high sugar diet

    Evolution of infectious bronchitis virus in the field after homologous vaccination introduction

    Get PDF
    International audienceAbstractDespite the fact that vaccine resistance has been typically considered a rare phenomenon, some episodes of vaccine failure have been reported with increasing frequency in intensively-raised livestock. Infectious bronchitis virus (IBV) is a widespread avian coronavirus, whose control relies mainly on extensive vaccine administration. Unfortunately, the continuous emergence of new vaccine-immunity escaping variants prompts the development of new vaccines. In the present work, a molecular epidemiology study was performed to evaluate the potential role of homologous vaccination in driving IBV evolution. This was undertaken by assessing IBV viral RNA sequences from the ORF encoding the S1 portion of viral surface glycoprotein (S) before and after the introduction of a new live vaccine on broiler farms in northern-Italy. The results of several biostatistics analyses consistently demonstrate the presence of a higher pressure in the post-vaccination period. Natural selection was detected essentially on sites located on the protein surface, within or nearby domains involved in viral attachment or related functions. This evidence strongly supports the action of vaccine-induced immunity in conditioning viral evolution, potentially leading to the emergence of new vaccine-escape variants. The great plasticity of rapidly-evolving RNA-viruses in response to human intervention, which extends beyond the poultry industry, is demonstrated, claiming further attention due to their relevance for animal and especially human health

    Within-Host Dynamics of the Hepatitis C Virus Quasispecies Population in HIV-1/HCV Coinfected Patients

    Get PDF
    HIV/HCV coinfected individuals under highly active antiretroviral therapy (HAART) represent an interesting model for the investigation of the role played by the immune system in driving the evolution of the HCV quasispecies. We prospectively studied the intra-host evolution of the HCV heterogeneity in 8 coinfected subjects, selected from a cohort of 32 patients initiating HAART: 5 immunological responders (group A) and 3 immunological non-responders (group B), and in two HCV singly infected controls not assuming drugs (group C). For all these subjects at least two serial samples obtained at the first observation (before HAART) and more than 1 year later, underwent clonal sequence analysis of partial E1/E2 sequences, encompassing the whole HVR1. Evolutionary rates, dated phylogenies and population dynamics were co-estimated by using a Bayesian Markov Chain Monte Carlo approach, and site specific selection pressures were estimated by maximum likelihood-based methods. The intra-host evolutionary rates of HCV quasispecies was 10 times higher in subjects treated with HAART than in controls without immunodeficiency (1.9 and 2.3×10−3 sub/site/month in group A and B and 0.29×10−3 sub/site/month in group C individuals). The within-host Bayesian Skyline plot analysis showed an exponential growth of the quasispecies populations in immunological responders, coinciding with a peak in CD4 cell counts. On the contrary, quasispecies population remained constant in group B and in group C controls. A significant positive selection pressure was detected in a half of the patients under HAART and in none of the group C controls. Several sites under significant positive selection were described, mainly included in the HVR1. Our data indicate that different forces, in addition to the selection pressure, drive an exceptionally fast evolution of HCV during HAART immune restoration. We hypothesize that an important role is played by the enlargement of the viral replicative space

    Evolutionary Analysis of Inter-Farm Transmission Dynamics in a Highly Pathogenic Avian Influenza Epidemic

    Get PDF
    Phylogenetic studies have largely contributed to better understand the emergence, spread and evolution of highly pathogenic avian influenza during epidemics, but sampling of genetic data has never been detailed enough to allow mapping of the spatiotemporal spread of avian influenza viruses during a single epidemic. Here, we present genetic data of H7N7 viruses produced from 72% of the poultry farms infected during the 2003 epidemic in the Netherlands. We use phylogenetic analyses to unravel the pathways of virus transmission between farms and between infected areas. In addition, we investigated the evolutionary processes shaping viral genetic diversity, and assess how they could have affected our phylogenetic analyses. Our results show that the H7N7 virus was characterized by a high level of genetic diversity driven mainly by a high neutral substitution rate, purifying selection and limited positive selection. We also identified potential reassortment in the three genes that we have tested, but they had only a limited effect on the resolution of the inter-farm transmission network. Clonal sequencing analyses performed on six farm samples showed that at least one farm sample presented very complex virus diversity and was probably at the origin of chronological anomalies in the transmission network. However, most virus sequences could be grouped within clearly defined and chronologically sound clusters of infection and some likely transmission events between farms located 0.8–13 Km apart were identified. In addition, three farms were found as most likely source of virus introduction in distantly located new areas. These long distance transmission events were likely facilitated by human-mediated transport, underlining the need for strict enforcement of biosafety measures during outbreaks. This study shows that in-depth genetic analysis of virus outbreaks at multiple scales can provide critical information on virus transmission dynamics and can be used to increase our capacity to efficiently control epidemics

    Host shifts and molecular evolution of H7 avian influenza virus hemagglutinin

    Get PDF
    Evolutionary consequences of host shifts represent a challenge to identify the mechanisms involved in the emergence of influenza A (IA) viruses. In this study we focused on the evolutionary history of H7 IA virus in wild and domestic birds, with a particular emphasis on host shifts consequences on the molecular evolution of the hemagglutinin (HA) gene. Based on a dataset of 414 HA nucleotide sequences, we performed an extensive phylogeographic analysis in order to identify the overall genetic structure of H7 IA viruses. We then identified host shift events and investigated viral population dynamics in wild and domestic birds, independently. Finally, we estimated changes in nucleotide substitution rates and tested for positive selection in the HA gene. A strong association between the geographic origin and the genetic structure was observed, with four main clades including viruses isolated in North America, South America, Australia and Eurasia-Africa. We identified ten potential events of virus introduction from wild to domestic birds, but little evidence for spillover of viruses from poultry to wild waterbirds. Several sites involved in host specificity (addition of a glycosylation site in the receptor binding domain) and virulence (insertion of amino acids in the cleavage site) were found to be positively selected in HA nucleotide sequences, in genetically unrelated lineages, suggesting parallel evolution for the HA gene of IA viruses in domestic birds. These results highlight that evolutionary consequences of bird host shifts would need to be further studied to understand the ecological and molecular mechanisms involved in the emergence of domestic bird-adapted viruses

    Ancient DNA Elucidates the Controversy about the Flightless Island Hens (Gallinula sp.) of Tristan da Cunha

    Get PDF
    A persistent controversy surrounds the flightless island hen of Tristan da Cunha, Gallinula nesiotis. Some believe that it became extinct by the end of the 19th century. Others suppose that it still inhabits Tristan. There is no consensus about Gallinula comeri, the name introduced for the flightless moorhen from the nearby island of Gough. On the basis of DNA sequencing of both recently collected and historical material, we conclude that G. nesiotis and G. comeri are different taxa, that G. nesiotis indeed became extinct, and that G. comeri now inhabits both islands. This study confirms that among gallinules seemingly radical adaptations (such as the loss of flight) can readily evolve in parallel on different islands, while conspicuous changes in other morphological characters fail to occur

    Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

    Get PDF
    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment
    corecore