193 research outputs found

    Magnetic signatures of plasma-depleted flux tubes in the Saturnian inner magnetosphere

    Get PDF
    Initial Cassini observations have revealed evidence for interchanging magnetic flux tubes in the inner Saturnian magnetosphere. Some of the reported flux tubes differ remarkably by their magnetic signatures, having a depressed or enhanced magnetic pressure relative to their surroundings. The ones with stronger fields have been interpreted previously as either outward moving mass-loaded or inward moving plasma-depleted flux tubes based on magnetometer observations only. We use detailed multi-instrumental observations of small and large density depletions in the inner Saturnian magnetosphere from Cassini Rev. A orbit that enable us to discriminate amongst the two previous and opposite interpretations. Our analysis undoubtedly confirms the similar nature of both types of reported interchanging magnetic flux tubes, which are plasma-depleted, whatever their magnetic signatures are. Their different magnetic signature is clearly an effect associated with latitude. These Saturnian plasma-depleted flux tubes ultimately may play a similar role as the Jovian ones

    Preliminary results on Saturn's inner plasmasphere as observed by Cassini: Comparison with Voyager

    Get PDF
    We present an analysis of Saturn's inner plasmasphere as observed by the Cassini Plasma Spectrometer ( CAPS) experiment during Cassini's initial entry into Saturn's magnetosphere when the spacecraft was inserted into orbit around Saturn. The ion fluxes are divided into two subgroups: protons and water group ions. We present the relative amounts of these two groups and the first estimates of their fluid parameters: ion density, flow velocity and temperature. We also compare this data with electron plasma measurements. Within the plasmasphere and inside of Enceladus' orbit, water group ions are about a factor of similar to 10 greater than protons in number with number densities exceeding 40 cm(-3). Within this inner region the spacecraft acquires a negative potential so that the electron density is underestimated. The electron and proton temperatures, which could not be measured in this region by Voyager, are T similar to 2 eVat L similar to 3. Also, within this inner region the protons, because of a negative spacecraft potential, appear to be super-corotating. By enforcing the condition that protons and water group ions are co-moving we may be able to acquire an independent estimate of the spacecraft potential relative to that estimated when comparing ion-electron measurements. Using our estimates of plasma properties, we estimate the importance of the rotating plasma on the stress balance equation for the inner magnetosphere and corresponding portion of the ring current

    Preliminary results on Saturn's inner plasmasphere as observed by Cassini: Comparison with Voyager

    Get PDF
    We present an analysis of Saturn's inner plasmasphere as observed by the Cassini Plasma Spectrometer ( CAPS) experiment during Cassini's initial entry into Saturn's magnetosphere when the spacecraft was inserted into orbit around Saturn. The ion fluxes are divided into two subgroups: protons and water group ions. We present the relative amounts of these two groups and the first estimates of their fluid parameters: ion density, flow velocity and temperature. We also compare this data with electron plasma measurements. Within the plasmasphere and inside of Enceladus' orbit, water group ions are about a factor of similar to 10 greater than protons in number with number densities exceeding 40 cm(-3). Within this inner region the spacecraft acquires a negative potential so that the electron density is underestimated. The electron and proton temperatures, which could not be measured in this region by Voyager, are T similar to 2 eVat L similar to 3. Also, within this inner region the protons, because of a negative spacecraft potential, appear to be super-corotating. By enforcing the condition that protons and water group ions are co-moving we may be able to acquire an independent estimate of the spacecraft potential relative to that estimated when comparing ion-electron measurements. Using our estimates of plasma properties, we estimate the importance of the rotating plasma on the stress balance equation for the inner magnetosphere and corresponding portion of the ring current

    Judgments of learning index relative confidence, not subjective probability

    Get PDF
    The underconfidence-with-practice (UWP) effect is a common finding in calibration studies concerned with judgments of learning (JOLs) elicited on a percentage scale. The UWP pattern is present when, in a procedure consisting of multiple study-test cycles, mean scale JOLs underestimate mean recall performance on cycle 2 and beyond. Although this pattern is present both for items recalled and unrecalled on the preceding cycle, to date research has concentrated mostly on the sources of UWP for the latter type of items. The present study aimed at bridging this gap. In three experiments, we examined calibration on the third of three cycles. The results of Experiment 1 demonstrated the typical pattern of higher recall and scale JOLs for previously recalled items compared to unrecalled ones. More important, they also revealed that even though the UWP effect was found for both items previously recalled once and twice, its magnitude was greater for the former class of items. Experiments 2 and 3, which employed a binary betting task and a binary 0/100% JOL task, respectively, demonstrated that people can accurately predict future recall for previously recalled items with binary decisions. In both experiments, the UWP effect was absent both for items recalled once and twice. We suggest that the sensitivity of scale JOLs, but not binary judgments, to the number of previous recall successes strengthens the claim of Hanczakowski, Zawadzka, Pasek, and Higham (2013) that scale JOLs reflect confidence in, rather than the subjective probability of, future recall

    Ocean currents shape the microbiome of Arctic marine sediments

    Get PDF
    Prokaryote communities were investigated on the seasonally stratified Alaska Beaufort Shelf (ABS). Water and sediment directly underlying water with origin in the Arctic, Pacific or Atlantic oceans were analyzed by pyrosequencing and length heterogeneity-PCR in conjunction with physicochemical and geographic distance data to determine what features structure ABS microbiomes. Distinct bacterial communities were evident in all water masses. Alphaproteobacteria explained similarity in Arctic surface water and Pacific derived water. Deltaproteobacteria were abundant in Atlantic origin water and drove similarity among samples. Most archaeal sequences in water were related to unclassified marine Euryarchaeota. Sediment communities influenced by Pacific and Atlantic water were distinct from each other and pelagic communities. Firmicutes and Chloroflexi were abundant in sediment, although their distribution varied in Atlantic and Pacific influenced sites. Thermoprotei dominated archaea in Pacific influenced sediments and Methanomicrobia dominated in methane-containing Atlantic influenced sediments. Length heterogeneity-PCR data from this study were analyzed with data from methane-containing sediments in other regions. Pacific influenced ABS sediments clustered with Pacific sites from New Zealand and Chilean coastal margins. Atlantic influenced ABS sediments formed another distinct cluster. Density and salinity were significant structuring features on pelagic communities. Porosity co-varied with benthic community structure across sites and methane did not. This study indicates that the origin of water overlying sediments shapes benthic communities locally and globally and that hydrography exerts greater influence on microbial community structure than the availability of methane

    Delocalisation patterns in University-Industry interaction: Evidence from the 6th R&D Framework Programme

    Get PDF
    Increasing university-industry interaction (UII) and university contribution to the local economy are compatibleconventional wisdom would say. However, similar to other university activities, interaction with industry may be limited due to a lack of absorptive capacity in local firms. The data of those participating in the European Union's (EU's) Sixth R&D Framework Programme (FP6) were used to obtain values for the number and, notably, the budgets of UII projects at the regional level for the EU27. Two types of interactions were considered: inside and outside the region. Our analysis indicates that universities from regions whose firms have low absorptive capacity participate more often in FP6 projects with firms outside the region. Our results highlight the value of policies that facilitate firm R&D to enhance collaboration with regional universities.Azagra Caro, JM.; Pontikakis, D.; Varga, A. (2013). Delocalisation patterns in University-Industry interaction: Evidence from the 6th R&D Framework Programme. European Planning Studies. 21(10):1676-1701. doi:10.1080/09654313.2012.722949S16761701211

    Consumer perceptions of co-branding alliances: Organizational dissimilarity signals and brand fit

    Get PDF
    This study explores how consumers evaluate co-branding alliances between dissimilar partner firms. Customers are well aware that different firms are behind a co-branded product and observe the partner firms’ characteristics. Drawing on signaling theory, we assert that consumers use organizational characteristics as signals in their assessment of brand fit and for their purchasing decisions. Some organizational signals are beyond the control of the co-branding partners or at least they cannot alter them on short notice. We use a quasi-experimental design and test how co-branding partner dissimilarity affects brand fit perception. The results show that co-branding partner dissimilarity in terms of firm size, industry scope, and country-of-origin image negatively affects brand fit perception. Firm age dissimilarity does not exert significant influence. Because brand fit generally fosters a benevolent consumer attitude towards a co-branding alliance, the findings suggest that high partner dissimilarity may reduce overall co-branding alliance performance

    Resurrection and redescription of Varestrongylus alces (Nematoda; Protostrongylidae), a lungworm of the Eurasian moose (Alces alces), with report on associated pathology

    Get PDF
    Varestrongylus alces, a lungworm in Eurasian moose from Europe has been considered a junior synonym of Varestrongylus capreoli, in European roe deer, due to a poorly detailed morphological description and the absence of a type-series. Methods Specimens used in the redescription were collected from lesions in the lungs of Eurasian moose, from Vestby, Norway. Specimens were described based on comparative morphology and integrated approaches. Molecular identification was based on PCR, cloning and sequencing of the ITS-2 region of the nuclear ribosomal DNA. Phylogenetic analysis compared V. alces ITS-2 sequences to these of other Varestrongylus species and other protostrongylids. Results Varestrongylus alces is resurrected for protostrongylid nematodes of Eurasian moose from Europe. Varestrongylus alces causes firm nodular lesions that are clearly differentiated from the adjacent lung tissue. Histologically, lesions are restricted to the parenchyma with adult, egg and larval parasites surrounded by multinucleated giant cells, macrophages, eosinophilic granulocytes, lymphocytes. The species is valid and distinct from others referred to Varestrongylus, and should be separated from V. capreoli. Morphologically, V. alces can be distinguished from other species by characters in the males that include a distally bifurcated gubernaculum, arched denticulate crura, spicules that are equal in length and relatively short, and a dorsal ray that is elongate and bifurcated. Females have a well-developed provagina, and are very similar to those of V. capreoli. Morphometrics of first-stage larvae largely overlap with those of other Varestrongylus. Sequences of the ITS-2 region strongly support mutual independence of V. alces, V. cf. capreoli, and the yet undescribed species of Varestrongylus from North American ungulates. These three taxa form a well-supported crown-clade as the putative sister of V. alpenae. The association of V. alces and Alces or its ancestors is discussed in light of host and parasite phylogeny and host historical biogeography. Varestrongylus alces is a valid species, and should be considered distinct from V. capreoli. Phylogenetic relationships among Varestrongylus spp. from Eurasia and North America are complex and consistent with faunal assembly involving recurrent events of geographic expansion, host switching and subsequent speciation. Cervidae, Cryptic species, Historical biogeography, ITS-2, Metastrongyloidea, Parasite biodiversity, Varestrongylinae, Varestrongylus capreoli, Verminous pneumoniapublishedVersio

    Recruited Cells Can Become Transformed and Overtake PDGF-Induced Murine Gliomas In Vivo during Tumor Progression

    Get PDF
    Gliomas are thought to form by clonal expansion from a single cell-of-origin, and progression-associated mutations to occur in its progeny cells. Glioma progression is associated with elevated growth factor signaling and loss of function of tumor suppressors Ink4a, Arf and Pten. Yet, gliomas are cellularly heterogeneous; they recruit and trap normal cells during infiltration.We performed lineage tracing in a retrovirally mediated, molecularly and histologically accurate mouse model of hPDGFb-driven gliomagenesis. We were able to distinguish cells in the tumor that were derived from the cell-of-origin from those that were not. Phenotypic, tumorigenic and expression analyses were performed on both populations of these cells. Here we show that during progression of hPDGFb-induced murine gliomas, tumor suppressor loss can expand the recruited cell population not derived from the cell-of-origin within glioma microenvironment to dominate regions of the tumor, with essentially no contribution from the progeny of glioma cell-of-origin. Moreover, the recruited cells can give rise to gliomas upon transplantation and passaging, acquire polysomal expression profiles and genetic aberrations typically present in glioma cells rather than normal progenitors, aid progeny cells in glioma initiation upon transplantation, and become independent of PDGFR signaling.These results indicate that non-cell-of-origin derived cells within glioma environment in the mouse can be corrupted to become bona fide tumor, and deviate from the generally established view of gliomagenesis
    corecore