16 research outputs found

    A Disintegrin and Metalloenzyme (ADAM) 17 Activation Is Regulated by α5β1 Integrin in Kidney Mesangial Cells

    Get PDF
    The disintegrin and metalloenzyme ADAM17 participates in numerous inflammatory and proliferative diseases, and its pathophysiological role was implicated in kidney fibrosis, polycystic kidney disease and other chronic kidney diseases. At present, we have little understanding how the enzyme activity is regulated. In this study we wanted to characterize the role of α5β1 integrin in ADAM17 activity regulation during G protein-coupled receptor (GPCR) stimulation.We showed previously that the profibrotic GPCR agonist serotonin (5-HT) induced kidney mesangial cell proliferation through ADAM17 activation and heparin-binding epidermal growth factor (HB-EGF) shedding. In the present studies we observed that in unstimulated mesangial cell lysates α5β1 integrin co-precipitated with ADAM17 and that 5-HT treatment of the cells induced dissociation of α5β1 integrin from ADAM17. Using fluorescence immunostaining and in situ proximity ligation assay, we identified the perinuclear region as the localization of the ADAM17/α5β1 integrin interaction. In cell-free assays, we showed that purified α5β1 integrin and β1 integrin dose-dependently bound to and inhibited activity of recombinant ADAM17. We provided evidence that the conformation of the integrin determines its ADAM17-binding ability. To study the effect of β1 integrin on ADAM17 sheddase activity, we employed alkaline phosphatase-tagged HB-EGF. Overexpression of β1 integrin lead to complete inhibition of 5-HT-induced HB-EGF shedding and silencing β1 integrin by siRNA significantly increased mesangial cells ADAM17 responsiveness to 5-HT.Our data show for the first time that β1 integrin has an important physiological role in ADAM17 activity regulation. We suggest that regulating α5β1 integrin binding to ADAM17 could be an attractive therapeutic target in chronic kidney diseases

    Force-induced unfolding simulations of the human Notch1 negative negulatory negion: Possible roles of the heterodimerization domain in mechanosensing

    Get PDF
    Citation: Chen J, Zolkiewska A (2011) Force-Induced Unfolding Simulations of the Human Notch1 Negative Regulatory Region: Possible Roles of the Heterodimerization Domain in Mechanosensing. PLOS ONE 6(7): e22837. https://doi.org/10.1371/journal.pone.0022837Notch receptors are core components of the Notch signaling pathway and play a central role in cell fate decisions during development as well as tissue homeostasis. Upon ligand binding, Notch is sequentially cleaved at the S2 site by an ADAM protease and at the S3 site by the c-secretase complex. Recent X-ray structures of the negative regulatory region (NRR) of the Notch receptor reveal an auto-inhibited fold where three protective Lin12/Notch repeats (LNR) of the NRR shield the S2 cleavage site housed in the heterodimerization (HD) domain. One of the models explaining how ligand binding drives the NRR conformation from a protease-resistant state to a protease-sensitive one invokes a mechanical force exerted on the NRR upon ligand endocytosis. Here, we combined physics-based atomistic simulations and topology-based coarse-grained modeling to investigate the intrinsic and force-induced folding and unfolding mechanisms of the human Notch1 NRR. The simulations support that external force applied to the termini of the NRR disengages the LNR modules from the heterodimerization (HD) domain in a well-defined, largely sequential manner. Importantly, the mechanical force can further drive local unfolding of the HD domain in a functionally relevant fashion that would provide full proteolytic access to the S2 site prior to heterodimer disassociation. We further analyzed local structural features, intrinsic folding free energy surfaces, and correlated motions of the HD domain. The results are consistent with a model in which the HD domain possesses inherent mechanosensing characteristics that could be utilized during Notch activation. This potential role of the HD domain in ligand-dependent Notch activation may have implications for understanding normal and aberrant Notch signaling
    corecore