65 research outputs found
Evolution of Stress-Regulated Gene Expression in Duplicate Genes of Arabidopsis thaliana
Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time) is >∼0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments
Duplication and Retention Biases of Essential and Non-Essential Genes Revealed by Systematic Knockdown Analyses
When a duplicate gene has no apparent loss-of-function phenotype, it is commonly considered that the phenotype has been masked as a result of functional redundancy with the remaining paralog. This is supported by indirect evidence showing that multi-copy genes show loss-of-function phenotypes less often than single-copy genes and by direct tests of phenotype masking using select gene sets. Here we take a systematic genome-wide RNA interference approach to assess phenotype masking in paralog pairs in the Caenorhabditis elegans genome. Remarkably, in contrast to expectations, we find that phenotype masking makes only a minor contribution to the low knockdown phenotype rate for duplicate genes. Instead, we find that non-essential genes are highly over-represented among duplicates, leading to a low observed loss-of-function phenotype rate. We further find that duplicate pairs derived from essential and non-essential genes have contrasting evolutionary dynamics: whereas non-essential genes are both more often successfully duplicated (fixed) and lost, essential genes are less often duplicated but upon successful duplication are maintained over longer periods. We expect the fundamental evolutionary duplication dynamics presented here to be broadly applicableclose9
The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Saccharomyces cerevisiae Genes
peer-reviewedThis study was supported by Science Foundation Ireland grants to MAF under two programs: the President of Ireland Young Researcher Award (04/YI1/M518) and the Research Frontiers Program (10/RFP/GEN2685). The study of distribution of mutations in duplicates and their possible effects on fitness was supported by a grant from the Ministerio de Ciencia e Innovacion (BFU2009-12022) to MAF. CT is supported by a long-term postdoctoral EMBO fellowship (EMBO ALTF 730-2011).Researchers have long been enthralled with the idea that gene duplication can generate novel functions, crediting this
process with great evolutionary importance. Empirical data shows that whole-genome duplications (WGDs) are more likely
to be retained than small-scale duplications (SSDs), though their relative contribution to the functional fate of duplicates
remains unexplored. Using the map of genetic interactions and the re-sequencing of 27 Saccharomyces cerevisiae genomes
evolving for 2,200 generations we show that SSD-duplicates lead to neo-functionalization while WGD-duplicates partition
ancestral functions. This conclusion is supported by: (a) SSD-duplicates establish more genetic interactions than singletons
and WGD-duplicates; (b) SSD-duplicates copies share more interaction-partners than WGD-duplicates copies; (c) WGDduplicates
interaction partners are more functionally related than SSD-duplicates partners; (d) SSD-duplicates gene copies
are more functionally divergent from one another, while keeping more overlapping functions, and diverge in their subcellular
locations more than WGD-duplicates copies; and (e) SSD-duplicates complement their functions to a greater extent
than WGD–duplicates. We propose a novel model that uncovers the complexity of evolution after gene duplicationScience Foundation IrelandMinisterio de Ciencia e InnovacionEuropean Molecular Biology Organizatio
The potential for carbon sequestration in Australian agricultural soils is technically and economically limited
Concerns about increasing concentrations of greenhouse gases in the atmosphere, primarily carbon dioxide (CO(2)), have raised worldwide interest in the potential of agricultural soils to be carbon (C) sinks. In Australia, studies that have quantified the effects of improved management practices in croplands on soil C have generally been inconclusive and contradictory for different soil depths and durations of the management changes. We therefore quantitatively synthesised the results of Australian studies using meta-analytic techniques to assess the technical and economic feasibility of increasing the soil C stock by improved management practices. Our results indicate that the potential of these improved practices to store C is limited to the surface 0–10 cm of soil and diminishes with time. None of these widely adopted practices is currently financially attractive under Australia's new legislation known as the Carbon Farming Initiative
Tetrapod limb and sarcopterygian fin regeneration share a core genetic programme
Salamanders are the only living tetrapods capable of fully regenerating limbs. The discovery of salamander lineage-specific genes (LSGs) expressed during limb regeneration suggests that this capacity is a salamander novelty. Conversely, recent paleontological evidence supports a deeper evolutionary origin, before the occurrence of salamanders in the fossil record. Here we show that lungfishes, the sister group of tetrapods, regenerate their fins through morphological steps equivalent to those seen in salamanders. Lungfish de novo transcriptome assembly and differential gene expression analysis reveal notable parallels between lungfish and salamander appendage regeneration, including strong downregulation of muscle proteins and upregulation of oncogenes, developmental genes and lungfish LSGs. MARCKS-like protein (MLP), recently discovered as a regeneration-initiating molecule in salamander, is likewise upregulated during early stages of lungfish fin regeneration. Taken together, our results lend strong support for the hypothesis that tetrapods inherited a bona fide limb regeneration programme concomitant with the fin-to-limb transition
Preferential retention of genes from one parental genome after polyploidy illustrates the nature and scope of the genomic conflicts induced by hybridization
<div><p>Polyploidy is increasingly seen as a driver of both evolutionary innovation and ecological success. One source of polyploid organisms’ successes may be their origins in the merging and mixing of genomes from two different species (e.g., allopolyploidy). Using POInT (the <u>P</u>olyploid <u>O</u>rthology <u>In</u>ference <u>T</u>ool), we model the resolution of three allopolyploidy events, one from the bakers’ yeast (<i>Saccharomyces cerevisiae</i>), one from the thale cress (<i>Arabidopsis thaliana)</i> and one from grasses including <i>Sorghum bicolor</i>. Analyzing a total of 21 genomes, we assign to every gene a probability for having come from each parental subgenome (i.e., derived from the diploid progenitor species), yielding orthologous segments across all genomes. Our model detects statistically robust evidence for the existence of <i>biased fractionation</i> in all three lineages, whereby genes from one of the two subgenomes were more likely to be lost than those from the other subgenome. We further find that a driver of this pattern of biased losses is the co-retention of genes from the same parental genome that share functional interactions. The pattern of biased fractionation after the <i>Arabidopsis</i> and grass allopolyploid events was surprisingly constant in time, with the same parental genome favored throughout the lineages’ history. In strong contrast, the yeast allopolyploid event shows evidence of biased fractionation only immediately after the event, with balanced gene losses more recently. The rapid loss of functionally associated genes from a single subgenome is difficult to reconcile with the action of genetic drift and suggests that selection may favor the removal of specific duplicates. Coupled to the evidence for continuing, functionally-associated biased fractionation after the <i>A</i>. <i>thaliana</i> At-α event, we suggest that, after allopolyploidy, there are functional conflicts between interacting genes encoded in different subgenomes that are ultimately resolved through preferential duplicate loss.</p></div
- …