289 research outputs found

    Trichloroethylene-induced formic aciduria: effect of dose, sex and strain of rat.

    Get PDF
    The industrial solvent trichloroethylene (TCE) has been reported to increase the excretion of formic acid in the urine of male Fischer 344 (F-344) rats following large oral doses. We have examined the dose–response relationship for formic aciduria in male and female Fischer 344 rats, the effect of some known metabolites of TCE and examined the response in male Wistar rats to help understand its relevance to renal toxicity. We report that doses of TCE as low as 8 mg/kg for 3 days to both male and female F344 rats produced formic aciduria. The formic aciduria was time-dependent being more marked after 3 doses compared to one dose in male F344 rats and to a lesser extent in female F344 rats. TCE administration to male Wistar rats produced less formic aciduria than in male F344 rats, indicating a strain difference in response. As TCE is primarily metabolised by cytochrome P450 2E1, Wistar rats were administered inducers of cytochrome P450 2E1 followed by TCE, this increased formic acid excretion to a concentration similar to that observed in male F344 rats, indicating a role for P450. Administration of the major metabolites of TCE, trichloroethanol and trichloroacetic acid to male F344 rats also produced a marked and sustained formic aciduria, while the metabolite of TCE formed via glutathione conjugation had no effect on formic acid excretion. The mechanism whereby this response occurs is currently not understood, but the formic acid excreted is not a metabolite of TCE, but appears to be due to interference with the metabolic utilisation of formate by a down stream metabolite of TCE. Over the three days of the studies no histopathological evidence of kidney toxicity was observed in F344 rats given TCE, indicating that the perturbation of formate metabolism does not lead to acute renal injury

    Trichloroethylene and trichloroethanol-induced formic aciduria and renal injury in male F-344 rats following 12 weeks exposure

    Get PDF
    Trichloroethylene (TCE) is widely used as a cleaning and decreasing agent and has been shown to cause liver tumours in rodents and a small incidence of renal tubule tumours in male rats. The basis for the renal tubule injury is believed to be related to metabolism of TCE via glutathione conjugation to yield the cysteine conjugate that can be activated by the enzyme cysteine conjugate β-lyase in the kidney. More recently TCE and its major metabolite trichloroethanol (TCE-OH) have been shown to cause formic aciduria which can cause renal injury after chronic exposure in rats. In this study we have compared the renal toxicity of TCE and TCE-OH in rats to try and ascertain whether the glutathione pathway or formic aciduria can account for the toxicity. Male rats were given TCE (500 mg/kg/day) or TCE-OH at (100 mg/kg/day) for 12 weeks and the extent of renal injury measured at several time points using biomarkers of nephrotoxicity and prior to termination assessing renal tubule cell proliferation. The extent of formic aciduria was also determined at several time points, while renal pathology and plasma urea and creatinine were determined at the end of the study. TCE produced a very mild increase in biomarkers of renal injury, total protein, and glucose over the first two weeks of exposure and increased Kim-1 and NAG in urine after 1 and 5 weeks exposure, while TCE-OH did not produce a consistent increase in these biomarkers in urine. However, both chemicals produced a marked and sustained increase in the excretion of formic acid in urine to a very similar extent. The activity of methionine synthase in the liver of TCE and TCE-OH treated rats was inhibited by about 50% indicative of a block in folate synthesis. Both renal pathology and renal tubule cell proliferation were reduced after TCE and TCE-OH treatment compared to controls. Our findings do not clearly identify the pathway which is responsible for the renal toxicity of TCE but do provide some support for metabolism via glutathione conjugation

    Detection of genotoxic and non-genotoxic renal carcinogens in vitro in NRK-52E cells using a transcriptomics approach. (2012).

    Get PDF
    There is a need to develop quick, cheap, sensitive and specific methods to detect the carcinogenic potential of chemicals. Currently there is no in vitro model system for reliable detection of non-genotoxic carcinogens (NGTX) and current tests for detection of genotoxic carcinogens (GTX) can have low specificity. A transcriptomics approach holds promise and a few studies have utilised this technique. However, the majority of these studies have examined liver carcinogens with little work on renal carcinogens which may act via renal-specific NGTX mechanisms. In this study the normal rat renal cell line (NRK-52E) was exposed to sub-toxic concentrations of selected rat renal carcinogens and non-carcinogens (NC) for 6 h, 24 h and 72 h. Renal carcinogens were classified based on their presumed mode of action into GTX and NGTX classes. A whole-genome transcriptomics approach was used to determined genes and pathways as potential signatures for GTX, NGTX and those common to both carcinogenic events in vitro. For some of the GTX compounds an S9 drug metabolising system was included to aid pro-carcinogen activation. Only three genes were commonly deregulated after carcinogen (GTX + NGTX) exposure, one Mdm2 with a detection rate of 67%, and p21 and Cd55 with a detection rate of 56%. However, examination of enriched pathways showed that 3 out of 4 NGTX carcinogens and 4 out of 5 GTX carcinogens were related to known pathways involved in carcinogenesis giving a detection rate of 78%. In contrast, none of the NC chemicals induced any of the above genes or well-established carcinogenic pathways. Additionally, five genes (Lingo1, Hmox1, Ssu72, Lyrm and Usp9x) were commonly altered with 3 out of 4 NGTX carcinogens but not with NC or GTX carcinogens. However, there was no clear separation of GTX and NGTX carcinogens using pathway analysis with several pathways being common to both classes. The findings presented here indicate that the NRK-52E cell line has the potential to detect carcinogenic chemicals, although a much larger number of chemicals need to be used to confirm these findings

    Transcriptomic alterations induced by Monuron in rat and human renal proximal tubule cells in vitro and comparison to rat renal-cortex in vivo

    Get PDF
    Monuron (1,1-dimethyl-3-(4-chlorophenyl)urea) is a non-selective phenylurea herbicide, widely used in developing countries although concerns have been raised about its toxicity and carcinogenicity. Monuron was evaluated by the National Toxicology Program in 1988 and shown to be a male rat-specific renal carcinogen. We report that oral administration of Monuron to male rats for 3 days, leads to a larger number of genes being differentially expressed in the renal-cortex than in the liver. Further, we observed up-regulation of cell cycle genes and genes involved in cell proliferation in the renal-cortex while in the liver xenobiotic metabolising enzymes were up-regulated. We also identified one commonly down-regulated gene in both organs – fragile histidine triad gene (Fhit), a putative tumour suppressor gene; however the down-regulation was only significant at the protein level in the liver. In addition, we conducted in vitro whole-genome transcriptomics studies with human and rat renal cortical cells. Rat cells exposed to Monuron showed down-regulation of sterol biosynthesis, spliceosome and cell cycle genes and up-regulation of genes involved in amino acid metabolism and transport. No genes were found to be differentially expressed in human cells exposed to Monuron. Overall, the findings from the in vitro studies showed very little overlap with the whole animal findings

    Maternal melatonin: Effective intervention against developmental programming of cardiovascular dysfunction in adult offspring of complicated pregnancy

    Get PDF
    Funder: British Heart Foundation; Id: http://dx.doi.org/10.13039/501100000274Abstract: Adopting an integrative approach, by combining studies of cardiovascular function with those at cellular and molecular levels, this study investigated whether maternal treatment with melatonin protects against programmed cardiovascular dysfunction in the offspring using an established rodent model of hypoxic pregnancy. Wistar rats were divided into normoxic (N) or hypoxic (H, 10% O2) pregnancy ± melatonin (M) treatment (5 μg·ml−1.day−1) in the maternal drinking water. Hypoxia ± melatonin treatment was from day 15–20 of gestation (term is ca. 22 days). To control for possible effects of maternal hypoxia‐induced reductions in maternal food intake, additional dams underwent pregnancy under normoxic conditions but were pair‐fed (PF) to the daily amount consumed by hypoxic dams from day 15 of gestation. In one cohort of animals from each experimental group (N, NM, H, HM, PF, PFM), measurements were made at the end of gestation. In another, following delivery of the offspring, investigations were made at adulthood. In both fetal and adult offspring, fixed aorta and hearts were studied stereologically and frozen hearts were processed for molecular studies. In adult offspring, mesenteric vessels were isolated and vascular reactivity determined by in‐vitro wire myography. Melatonin treatment during normoxic, hypoxic or pair‐fed pregnancy elevated circulating plasma melatonin in the pregnant dam and fetus. Relative to normoxic pregnancy, hypoxic pregnancy increased fetal haematocrit, promoted asymmetric fetal growth restriction and resulted in accelerated postnatal catch‐up growth. Whilst fetal offspring of hypoxic pregnancy showed aortic wall thickening, adult offspring of hypoxic pregnancy showed dilated cardiomyopathy. Similarly, whilst cardiac protein expression of eNOS was downregulated in the fetal heart, eNOS protein expression was elevated in the heart of adult offspring of hypoxic pregnancy. Adult offspring of hypoxic pregnancy further showed enhanced mesenteric vasoconstrictor reactivity to phenylephrine and the thromboxane mimetic U46619. The effects of hypoxic pregnancy on cardiovascular remodelling and function in the fetal and adult offspring were independent of hypoxia‐induced reductions in maternal food intake. Conversely, the effects of hypoxic pregnancy on fetal and postanal growth were similar in pair‐fed pregnancies. Whilst maternal treatment of normoxic or pair‐fed pregnancies with melatonin on the offspring cardiovascular system was unremarkable, treatment of hypoxic pregnancies with melatonin in doses lower than those recommended for overcoming jet lag in humans enhanced fetal cardiac eNOS expression and prevented all alterations in cardiovascular structure and function in fetal and adult offspring. Therefore, the data support that melatonin is a potential therapeutic target for clinical intervention against developmental origins of cardiovascular dysfunction in pregnancy complicated by chronic fetal hypoxia

    Socio-cultural influences on the behaviour of South Asian women with diabetes in pregnancy: qualitative study using a multi-level theoretical approach

    Get PDF
    BACKGROUND: Diabetes in pregnancy is common in South Asians, especially those from low-income backgrounds, and leads to short-term morbidity and longer-term metabolic programming in mother and offspring. We sought to understand the multiple influences on behaviour (hence risks to metabolic health) of South Asian mothers and their unborn child, theorise how these influences interact and build over time, and inform the design of culturally congruent, multi-level interventions. METHODS: Our sample for this qualitative study was 45 women of Bangladeshi, Indian, Sri Lankan, or Pakistani origin aged 21-45 years with a history of diabetes in pregnancy, recruited from diabetes and antenatal services in two deprived London boroughs. Overall, 17 women shared their experiences of diabetes, pregnancy, and health services in group discussions and 28 women gave individual narrative interviews, facilitated by multilingual researchers, audiotaped, translated, and transcribed. Data were analysed using the constant comparative method, drawing on sociological and narrative theories. RESULTS: Key storylines (over-arching narratives) recurred across all ethnic groups studied. Short-term storylines depicted the experience of diabetic pregnancy as stressful, difficult to control, and associated with negative symptoms, especially tiredness. Taking exercise and restricting diet often worsened these symptoms and conflicted with advice from relatives and peers. Many women believed that exercise in pregnancy would damage the fetus and drain the mother's strength, and that eating would be strength-giving for mother and fetus. These short-term storylines were nested within medium-term storylines about family life, especially the cultural, practical, and material constraints of the traditional South Asian wife and mother role and past experiences of illness and healthcare, and within longer-term storylines about genetic, cultural, and material heritage - including migration, acculturation, and family memories of food insecurity. While peer advice was familiar, meaningful, and morally resonant, health education advice from clinicians was usually unfamiliar and devoid of cultural meaning. CONCLUSIONS: 'Behaviour change' interventions aimed at preventing and managing diabetes in South Asian women before and during pregnancy are likely to be ineffective if delivered in a socio-cultural vacuum. Individual education should be supplemented with community-level interventions to address the socio-material constraints and cultural frames within which behavioural 'choices' are made

    Efficacy of insect larval meal to replace fish meal in juvenile barramundi, Lates calcarifer reared in freshwater

    Get PDF
    The present experiment was conducted to evaluate the efficacy of dietary protein from black soldier fly, Hermetia illucens, larval meal (BSFL) to replace fish meal (FM) protein in juvenile barramundi, Lates calcarifer. Larvae of black soldier fly were fed with the underutilised crop, sesbania, Sesbania grandiflora. Five isonitrogenous (44% crude protein) and isocaloric (16.0 kJ available energy/g) experimental diets were formulated to replace FM using processed BSFL meal at 0 (control), 25% (BSFL25), 50% (BSFL50), 75% (BSFL75) and 100% (BSFL100). Data for proximate and amino acid analysis suggested BSFL meal as an inferior protein ingredient than FM, but parallel to soybean meal. At the end of 8 weeks of fish feeding trial, there were no significant differences in the average weight gain (WG) and specific growth rate among the group of fish-fed control, BSFL25 and BSFL50 diets (P < 0.05). Although numerical differences were recorded in the fish whole-body proximate composition, crude protein and moisture content were not much affected by the different dietary treatments. Essential amino acids including arginine, histidine, lysine and methionine were found to be higher in the whole body of fish-fed BSFL100 diet. Broken line regression analysis of average WG showed an optimum FM replacement level of 28.4% with BSFL meal. Therefore, the present experiment clearly demonstrates that the maximal dietary inclusion level of BSFL meal as FM protein replacer for the optimum growth of juvenile barramundi reared in freshwater could be greater than 28.4% but less than 50%, without any adverse effects on the fish whole-body proximate and amino acid composition

    Cadherin-Dependent Cell Morphology in an Epithelium: Constructing a Quantitative Dynamical Model

    Get PDF
    Cells in the Drosophila retina have well-defined morphologies that are attained during tissue morphogenesis. We present a computer simulation of the epithelial tissue in which the global interfacial energy between cells is minimized. Experimental data for both normal cells and mutant cells either lacking or misexpressing the adhesion protein N-cadherin can be explained by a simple model incorporating salient features of morphogenesis that include the timing of N-cadherin expression in cells and its temporal relationship to the remodeling of cell-cell contacts. The simulations reproduce the geometries of wild-type and mutant cells, distinguish features of cadherin dynamics, and emphasize the importance of adhesion protein biogenesis and its timing with respect to cell remodeling. The simulations also indicate that N-cadherin protein is recycled from inactive interfaces to active interfaces, thereby modulating adhesion strengths between cells
    corecore