1,964 research outputs found
Non-simply-laced Lie algebras via F theory strings
In order to describe the appearance in F theory of the non--simply--laced Lie
algebras, we use the representation of symmetry enhancements by means of string
junctions. After an introduction to the techniques used to describe symmetry
enhancement, that is algebraic geometry, BPS states analysis and string
junctions, we concentrate on the latter. We give an explicit description of the
folding of D_{2n} to B_n of the folding of E_6 to F_4 and that of D_4 to G_2 in
terms of junctions and Jordan strings. We also discuss the case of C_n, but we
are unable in this case to provide a string interpretation.Comment: 24 pages, 3 figure
Evidence for F(uzz) Theory
We show that in the decoupling limit of an F-theory compactification, the
internal directions of the seven-branes must wrap a non-commutative four-cycle
S. We introduce a general method for obtaining fuzzy geometric spaces via toric
geometry, and develop tools for engineering four-dimensional GUT models from
this non-commutative setup. We obtain the chiral matter content and Yukawa
couplings, and show that the theory has a finite Kaluza-Klein spectrum. The
value of 1/alpha_(GUT) is predicted to be equal to the number of fuzzy points
on the internal four-cycle S. This relation puts a non-trivial restriction on
the space of gauge theories that can arise as a limit of F-theory. By viewing
the seven-brane as tiled by D3-branes sitting at the N fuzzy points of the
geometry, we argue that this theory admits a holographic dual description in
the large N limit. We also entertain the possibility of constructing string
models with large fuzzy extra dimensions, but with a high scale for quantum
gravity.Comment: v2: 66 pages, 3 figures, references and clarifications adde
Prolonged mitotic arrest induces a caspase-dependent DNA damage response at telomeres that determines cell survival
A delay in the completion of metaphase induces a stress response that inhibits further cell proliferation or induces apoptosis. This response is thought to protect against genomic instability and is important for the effects of anti-mitotic cancer drugs. Here, we show that mitotic arrest induces a caspase-dependent DNA damage response (DDR) at telomeres in non-apoptotic cells. This pathway is under the control of Mcl-1 and other Bcl-2 family proteins and requires caspase-9, caspase-3/7 and the endonuclease CAD/DFF40. The gradual caspase-dependent loss of the shelterin complex protein TRF2 from telomeres promotes a DDR that involves DNA-dependent protein kinase (DNA-PK). Suppression of mitotic telomere damage by enhanced expression of TRF2, or the inhibition of either caspase-3/7 or DNA-PK during mitotic arrest, promotes subsequent cell survival. Thus, we demonstrate that mitotic stress is characterised by the sub-apoptotic activation of a classical caspase pathway, which promotes telomere deprotection, activates DNA damage signalling, and determines cell fate in response to a prolonged delay in mitosis
The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling
Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues
Thermal inactivation and conformational lock studies on glucose oxidase
In this study, the dissociative thermal inactivation
and conformational lock theories are applied for the
homodimeric enzyme glucose oxidase (GOD) in order to
analyze its structure. For this purpose, the rate of activity
reduction of glucose oxidase is studied at various temperatures
using b-D-glucose as the substrate by incubation of
enzyme at various temperatures in the wide range between
40 and 70 �C using UV–Vis spectrophotometry. It was
observed that in the two ranges of temperatures, the
enzyme has two different forms. In relatively low temperatures,
the enzyme is in its dimeric state and has normal
activity. In high temperatures, the activity almost disappears
and it aggregates. The above achievements are confirmed
by dynamic light scattering. The experimental
parameter ‘‘n’’ as the obvious number of conformational
locks at the dimer interface of glucose oxidase is obtained
by kinetic data, and the value is near to two. To confirm the
above results, the X-ray crystallography structure of the
enzyme, GOD (pdb, 1gal), was also studied. The secondary
and tertiary structures of the enzyme to track the thermal
inactivation were studied by circular dichroism and
fluorescence spectroscopy, respectively. We proposed a
mechanism model for thermal inactivation of GOD based
on the absence of the monomeric form of the enzyme by
circular dichroism and fluorescence spectroscopy
Environmental Factors in the Relapse and Recurrence of Inflammatory Bowel Disease:A Review of the Literature
The causes of relapse in patients with Crohn's disease (CD) and ulcerative colitis (UC) are largely unknown. This paper reviews the epidemiological and clinical data on how medications (non-steroidal anti-inflammatory drugs, estrogens and antibiotics), lifestyle factors (smoking, psychological stress, diet and air pollution) may precipitate clinical relapses and recurrence. Potential biological mechanisms include: increasing thrombotic tendency, imbalances in prostaglandin synthesis, alterations in the composition of gut microbiota, and mucosal damage causing increased permeability
A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin
The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity seems to be largely determined by the Aux/IAA. As there are 6 TIR1/AUXIN SIGNALING F-BOX proteins (AFBs) and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin-sensing properties. We also demonstrate that the AFB5–Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response
Rudimentary G-Quadruplex-Based Telomere Capping In Saccharomyces Cerevisiae
Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA-stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3\u27 overhang inhibits 5\u27-\u3e 3\u27 resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo
Do Natural Proteins Differ from Random Sequences Polypeptides? Natural vs. Random Proteins Classification Using an Evolutionary Neural Network
Are extant proteins the exquisite result of natural selection or are they random sequences slightly edited by evolution? This question has puzzled biochemists for long time and several groups have addressed this issue comparing natural protein sequences to completely random ones coming to contradicting conclusions. Previous works in literature focused on the analysis of primary structure in an attempt to identify possible signature of evolutionary editing. Conversely, in this work we compare a set of 762 natural proteins with an average length of 70 amino acids and an equal number of completely random ones of comparable length on the basis of their structural features. We use an ad hoc Evolutionary Neural Network Algorithm (ENNA) in order to assess whether and to what extent natural proteins are edited from random polypeptides employing 11 different structure-related variables (i.e. net charge, volume, surface area, coil, alpha helix, beta sheet, percentage of coil, percentage of alpha helix, percentage of beta sheet, percentage of secondary structure and surface hydrophobicity). The ENNA algorithm is capable to correctly distinguish natural proteins from random ones with an accuracy of 94.36%. Furthermore, we study the structural features of 32 random polypeptides misclassified as natural ones to unveil any structural similarity to natural proteins. Results show that random proteins misclassified by the ENNA algorithm exhibit a significant fold similarity to portions or subdomains of extant proteins at atomic resolution. Altogether, our results suggest that natural proteins are significantly edited from random polypeptides and evolutionary editing can be readily detected analyzing structural features. Furthermore, we also show that the ENNA, employing simple structural descriptors, can predict whether a protein chain is natural or random
- …