182 research outputs found

    A systematic review on the excess health risk of antibiotic-resistant bloodstream infections for six key pathogens in Europe

    Get PDF
    Background Antimicrobial resistance is a global threat, which requires novel intervention strategies, for which priority pathogens and settings need to be determined. Objectives We evaluated pathogen-specific excess health burden of drug-resistant bloodstream infections (BSIs) in Europe. Methods A systematic review and meta-analysis. Data sources MEDLINE, Embase, and grey literature for the period January 1990 to May 2022. Study eligibility criteria Studies that reported burden data for six key drug-resistant pathogens: carbapenem-resistant (CR) Pseudomonas aeruginosa and Acinetobacter baumannii, third-generation cephalosporin or CR Escherichia coli and Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium. Excess health outcomes compared with drug-susceptible BSIs or uninfected patients. For MRSA and third-generation cephalosporin E. coli and K. pneumoniae BSIs, five or more European studies were identified. For all others, the search was extended to high-income countries. Participants Paediatric and adult patients diagnosed with drug-resistant BSI. Interventions Not applicable. Assessment of risk of bias An adapted version of the Joanna-Briggs Institute assessment tool. Methods of data synthesis Random-effect models were used to pool pathogen-specific burden estimates. Results We screened 7154 titles, 1078 full-texts and found 56 studies on BSIs. Most studies compared outcomes of drug-resistant to drug-susceptible BSIs (46/56, 82.1%), and reported mortality (55/56 studies, 98.6%). The pooled crude estimate for excess all-cause mortality of drug-resistant versus drug-susceptible BSIs ranged from OR 1.31 (95% CI 1.03–1.68) for CR P. aeruginosa to OR 3.44 (95% CI 1.62–7.32) for CR K. pneumoniae. Pooled crude estimates comparing mortality to uninfected patients were available for vancomycin-resistant Enterococcus and MRSA BSIs (OR of 11.19 [95% CI 6.92–18.09] and OR 6.18 [95% CI 2.10–18.17], respectively). Conclusions Drug-resistant BSIs are associated with increased mortality, with the magnitude of the effect influenced by pathogen type and comparator. Future research should address crucial knowledge gaps in pathogen- and infection-specific burdens to guide development of novel interventions

    Elimination Therapy for the Endemic Malarias

    Get PDF
    Most malaria diagnosed outside endemic zones occurs in patients experiencing the consequences of what was likely a single infectious bite by an anopheline mosquito. A single species of parasite is nearly always involved and expert opinion on malaria chemotherapy uniformly prescribes species- and stage-specific treatments. However the vast majority of people experiencing malaria, those resident in endemic zones, do so repeatedly and very often with the involvement of two or more species and stages of parasite. Silent forms of these infections—asymptomatic and beyond the reach of diagnostics—may accumulate to form substantial and unchallenged reservoirs of infection. In such settings treating only the species and stage of malaria revealed by diagnosis and not others may not be sensible or appropriate. Developing therapeutic strategies that address all species and stages independently of diagnostic evidence may substantially improve the effectiveness of the control and elimination of endemic malaria

    IL-17RA Signaling Reduces Inflammation and Mortality during Trypanosoma cruzi Infection by Recruiting Suppressive IL-10-Producing Neutrophils

    Get PDF
    Members of the IL-17 cytokine family play an important role in protection against pathogens through the induction of different effector mechanisms. We determined that IL-17A, IL-17E and IL-17F are produced during the acute phase of T. cruzi infection. Using IL-17RA knockout (KO) mice, we demonstrate that IL-17RA, the common receptor subunit for many IL-17 family members, is required for host resistance during T. cruzi infection. Furthermore, infected IL-17RA KO mice that lack of response to several IL-17 cytokines showed amplified inflammatory responses with exuberant IFN-γ and TNF production that promoted hepatic damage and mortality. Absence of IL-17RA during T. cruzi infection resulted in reduced CXCL1 and CXCL2 expression in spleen and liver and limited neutrophil recruitment. T. cruzi-stimulated neutrophils secreted IL-10 and showed an IL-10-dependent suppressive phenotype in vitro inhibiting T-cell proliferation and IFN-γ production. Specific depletion of Ly-6G+ neutrophils in vivo during T. cruzi infection raised parasitemia and serum IFN-γ concentration and resulted in increased liver pathology in WT mice and overwhelming wasting disease in IL-17RA KO mice. Adoptively transferred neutrophils were unable to migrate to tissues and to restore resistant phenotype in infected IL-17RA KO mice but migrated to spleen and liver of infected WT mice and downregulated IFN-γ production and increased survival in an IL-10 dependent manner. Our results underscore the role of IL-17RA in the modulation of IFN-γ-mediated inflammatory responses during infections and uncover a previously unrecognized regulatory mechanism that involves the IL-17RA-mediated recruitment of suppressive IL-10-producing neutrophils

    De Novo Transcriptomic Analysis of an Oleaginous Microalga: Pathway Description and Gene Discovery for Production of Next-Generation Biofuels

    Get PDF
    Background: Eustigmatos cf. polyphem is a yellow-green unicellular soil microalga belonging to the eustimatophyte with high biomass and considerable production of triacylglycerols (TAGs) for biofuels, which is thus referred to as an oleaginous microalga. The paucity of microalgae genome sequences, however, limits development of gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for a non-model microalgae species, E. cf. polyphem, and identify pathways and genes of importance related to biofuel production. Results: We performed the de novo assembly of E. cf. polyphem transcriptome using Illumina paired-end sequencing technology. In a single run, we produced 29,199,432 sequencing reads corresponding to 2.33 Gb total nucleotides. These reads were assembled into 75,632 unigenes with a mean size of 503 bp and an N50 of 663 bp, ranging from 100 bp to.3,000 bp. Assembled unigenes were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. These analyses identified the majority of carbohydrate, fatty acids, TAG and carotenoids biosynthesis and catabolism pathways in E. cf. polyphem. Conclusions: Our data provides the construction of metabolic pathways involved in the biosynthesis and catabolism of carbohydrate, fatty acids, TAG and carotenoids in E. cf. polyphem and provides a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character o

    The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes

    Get PDF
    BACKGROUND: Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. METHODOLOGY/PRINCIPAL FINDINGS: We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. CONCLUSIONS/SIGNIFICANCE: Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments

    Usefulness of PCR-based assays to assess drug efficacy in Chagas disease chemotherapy: value and limitations

    Full text link
    One major goal of research on Chagas disease is the development of effective chemotherapy to eliminate the infection from individuals who have not yet developed cardiac and/or digestive disease manifestations. Cure evaluation is the more complex aspect of its treatment, often leading to diverse and controversial results. The absence of reliable methods or a diagnostic gold standard to assess etiologic treatment efficacy still constitutes a major challenge. In an effort to develop more sensitive tools, polymerase chain reaction (PCR)-based assays were introduced to detect low amounts of Trypanosoma cruzi DNA in blood samples from chagasic patients, thus improving the diagnosis and follow-up evaluation after chemotherapy. In this article, I review the main problems concerning drug efficacy and criteria used for cure estimation in treated chagasic patients, and the work conducted by different groups on developing PCR methodologies to monitor treatment outcome of congenital infections as well as recent and late chronic T. cruzi infections
    corecore