4 research outputs found
Relativistic instant-form approach to the structure of two-body composite systems
A new approach to the electroweak properties of two-particle composite
systems is developed. The approach is based on the use of the instant form of
relativistic Hamiltonian dynamics. The main novel feature of this approach is
the new method of construction of the matrix element of the electroweak current
operator. The electroweak current matrix element satisfies the relativistic
covariance conditions and in the case of the electromagnetic current also the
conservation law automatically. The properties of the system as well as the
approximations are formulated in terms of form factors. The approach makes it
possible to formulate relativistic impulse approximation in such a way that the
Lorentz-covariance of the current is ensured. In the electromagnetic case the
current conservation law is ensured, too. The results of the calculations are
unambiguous: they do not depend on the choice of the coordinate frame and on
the choice of "good" components of the current as it takes place in the
standard form of light--front dynamics. Our approach gives good results for the
pion electromagnetic form factor in the whole range of momentum transfers
available for experiments at present time, as well as for lepton decay constant
of pion.Comment: 26 pages, Revtex, 5 figure