2 research outputs found

    Complexation Of The Fe(iii) And Fe(ii) Sulphates With Diphenyl-4-amine Barium Sulphonate (das) Synthesis, Thermogravimetric And Spectroscopic Studies

    No full text
    Reactions in aqueous-alcoholic solution between diphenyl-4-amine barium sulphonate (Ba-DAS-anionic surfactant) and the hydrated sulphates of Fe(III) and Fe(II) ions and their use to ovtain iron oxides are described here. The formation of Fe(II) complexes was reached by using an excess of Ba-DAS, in absence of light under inert atmosphere. The complexes achieved Fe 2[(C12H10NO3S)4] •9H2O and Fe3[(C12H10NO 3S)6]•12H2O were characterized by TG/DTG and IR, UV-VIS and 57Fe-Mössbauer analyses.971289296Zhonghua, W., Lin, G., Qianshu, L., Surface atomic structures of Fe2O3 nanoparticles coated with cetyltrimethyl ammonium bromide and sodium dodecyl benzene sulphonate: An extended x-ray absorption fine-structure study (1999) J Phys: Condens Matter, 11, pp. 4961-4970. , 10.1088/0953-8984/11/26/301Lim, S.K., Chung, K.J., Kim, Y.-H., Kim, C.K., Yoon, C.S., Synthesis of iron oxide nanoparticles in a polyimide matrix (2004) Journal of Colloid and Interface Science, 273 (2), pp. 517-522. , DOI 10.1016/j.jcis.2004.01.084, PII S0021979704001407Panda, R.N., Gajbhiye, N.S., Balaji, G., Magnetic properties of interacting single domain Fe3O 4 particles (2001) J Alloys Compd, 326, pp. 50-53. , 10.1016/S0925-8388(01)01225-7 1:CAS:528:DC%2BD3MXmsFygsLs%3DJiang, L., Sun, W., Kim, J., Preparation and characterization of ω-functionalized polystyrene-magnetite nanocomposites (2007) Materials Chemistry and Physics, 101 (2-3), pp. 291-296. , DOI 10.1016/j.matchemphys.2006.05.007, PII S025405840600157XKorolev, V.V., Arefyev, I.M., Blinov, A.V., Heat capacity of superfine oxides of iron under applied magnetic fields (2008) J Therm Anal Cal, 92, pp. 697-700. , 10.1007/s10973-008-9020-4 1:CAS:528:DC%2BD1cXotFyksbk%3DChen, Q., Wang, J., Sun, J., One-step hydrothermal process to prepare highly crystalline Fe 3O4 nanoparticles with improved magnetic properties (2003) Mater Res Bull, 38, pp. 1113-1118. , 10.1016/S0025-5408(03)00129-6Lu, J., Fan, J., Xu, R., Roy, S., Ali, N., Gao, Y., Synthesis of alkyl sulfonate/alcohol-protected γ-Fe 2O3 nanocrystals with narrow size distributions (2003) Journal of Colloid and Interface Science, 258 (2), pp. 427-431. , DOI 10.1016/S0021-9797(02)00152-2Liu, H., Wei, Y., Sun, Y., The Formation of hematite from ferrihydrite using Fe(II) as a catalyst (2005) Journal of Molecular Catalysis A: Chemical, 226 (1), pp. 135-140. , DOI 10.1016/j.molcata.2004.09.019, PII S1381116904006648Mailhot, G., Asif, A., Bolte, M., Degradation of sodium 4-dodecylbenzenesulphonate photoinduced by Fe(III) in aqueous solution (2000) Chemosphere, 41 (3), pp. 363-370. , DOI 10.1016/S0045-6535(99)00434-8, PII S0045653599004348Horvath, O., Bodnar, E., Hegyi, J., Photoassisted oxidative degradation of surfactants and simultaneous reduction of metals in titanium dioxide dispersions (2005) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 265 (1-3), pp. 135-140. , DOI 10.1016/j.colsurfa.2004.12.066, PII S0927775705002712, Interfaces against PollutionsCiesla, P., Kocot, P., Mytych, P., Stasicka, Z., Homogeneous photocatalysis by transition metal complexes in the environment (2004) J Mol Catal A: Chem, 224, pp. 17-33. , 10.1016/j.molcata.2004.08.043 1:CAS:528:DC%2BD2cXhtVWgt7zORose, A.L., Waite, T.D., Role of superoxide in the photochemical reduction of iron in seawater (2006) Geochimica et Cosmochimica Acta, 70 (15), pp. 3869-3882. , DOI 10.1016/j.gca.2006.06.008, PII S0016703706002870Zuo, Y., Zhan, J., Effects of oxalate on Fe-catalyzed photooxidation of dissolved sulfur dioxide in atmospheric water (2005) Atmospheric Environment, 39 (1), pp. 27-37. , DOI 10.1016/j.atmosenv.2004.09.058, PII S1352231004009495Beentjes, P.C.J., Van Den Brand, J., De Wit, J.H.W., Interaction of ester and acid groups containing organic compouds with iron oxide surfaces (2006) J Adhesion Sci Technol, 20, pp. 1-18. , 10.1163/156856106775212396 1:CAS:528:DC%2BD28Xjs12iur0%3DZhang, H., Wen, X., Wang, Y., Synthesis and characterization of sulfate and dodecylbenzenesulfonate intercalated zinc-iron layered double hydroxides by one-step coprecipitation route (2007) Journal of Solid State Chemistry, 180 (5), pp. 1636-1647. , DOI 10.1016/j.jssc.2007.03.016, PII S002245960700117XNakanishi, K., Solomon, P.H., (1977) Infrared Absorption Spectroscopy, , 2 Holden-Day San Francisco, CABellamy, L.J., (1980) The Infrared Spectra of Complex Molecules, 2. , London: Chapman and HallXu, Z.P., Braterman, P.S., High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphological changes (2003) J Mater Chem, 13, pp. 268-273. , 10.1039/b207540g 1:CAS:528:DC%2BD3sXps1ehsw%3D%3DGreenwood, N.N., Gibb, T.C., (1971) Mössbauer Spectroscopy, , Barnes and Noble Inc New YorkMacHado, L.C., Marins, A.A.L., Muri, E.J.B., Reaction products between sodium diphenyl-amine-4-sulfonate and hydrated LaCl3: Thermogravimetric and spectroscopic study (2004) J Therm Anal Cal, 75, pp. 615-621. , 10.1023/B:JTAN.0000027153.24401.31 1:CAS:528:DC%2BD2cXisVKjs7c%3DCrepaldi, E.L., Pavan, P.C., Tronto, J., Valim, J.B., Chemical, structural, and thermal properties of Zn(II)-Cr(III) layered double hydroxides intercalated with sulfated and sulfonated surfactants (2002) Journal of Colloid and Interface Science, 248 (2), pp. 429-442. , DOI 10.1006/jcis.2002.8214Zhang, L.-H., Jiang, H., Gong, H., Sun, Z.-L., Characteristics of thermal decomposition products of rare earth, alkali earth metal and transition metal p-toluenesulfonates (2005) Journal of Thermal Analysis and Calorimetry, 79 (3), pp. 731-735. , DOI 10.1007/s10973-005-0604-y(1996) JCPDS-International Centre for Diffraction DataGuinier, A., (1994) X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies, , Dover Publications New YorkKorolev, V.V., Arefyev, I.M., Ramazanova, A.G., The magnetocaloric effect of superfine magnets (2008) J Therm Anal Cal, 92, pp. 691-695. , 10.1007/s10973-008-9018-y 1:CAS:528:DC%2BD1cXotFyksbg%3
    corecore