7 research outputs found

    Dynamics of tree diversity in undisturbed and logged subtropical rainforest in Australia

    Get PDF
    In subtropical rainforest in eastern Australia, changes in the diversity of trees were compared under natural conditions and eight silvicultural regimes over 35 years. In the treated plots basal area remaining after logging ranged from 12 to 58 m2 per ha. In three control plots richness differed little over this period. In the eight treated plots richness per plot generally declined after intervention and then gradually increased to greater than original diversity. After logging there was a reduction in richness per plot and an increase in species richness per stem in all but the lightest selective treatments. The change in species diversity was related to the intensity of the logging, however the time taken for species richness to return to pre-logging levels was similar in all silvicultural treatments and was not effected by the intensity of treatment. These results suggest that light selective logging in these forests mainly affects dominant species. The return to high diversity after only a short time under all silvicultural regimes suggests that sustainability and the manipulation of species composition for desired management outcomes is possible

    Interaction between t-butyl hydroperoxide (I) and positive halogen compounds. part I. Intermediates in the reaction between I and CI2O

    No full text
    “positive halogen” compounds were found to induce the decomposition of t-butyl hydroperoxide (I) in the dark. In this Cl2O proved to be particularly effective, liberating oxygen from I instantaneously at 0°. At temperature between −80° and −30°, two oxygen-rich intermediates could be observed with the aid of NMR-spectroscopy. t-Butyl peroxyhypochlorite (But-O-O-Cl) was formed immediately; di-t-butyl trioxide (But[BOND]O[BOND]O[BOND]O[BOND]But) apparently resulted from a slower reaction, found to be promoted by alkali. By using a solution of di-t-butyl trioxide thus obtained, the polymerization of methyl acrylate could be initiated at a temperature as low as −20°

    The complex structures of arabinogalactan-proteins and the journey towards understanding function

    No full text
    The original publication can be found at www.springerlink.comArabinogalactan-proteins (AGPs) are a family of complex proteoglycans found in all higher plants. Although the precise function(s) of any single AGP is unknown, they are implicated in diverse developmental roles such as differentiation, cell-cell recognition, embryogenesis and programmed cell death. DNA sequencing projects have made possible the identification of the genes encoding a large number of putative AGP protein backbones. In contrast, our understanding of how AGPs undergo extensive post-translational modification is poor and it is important to understand these processes since they are likely to be critical for AGP function. Genes believed to be responsible for post-translational modification of an AGP protein backbone, include prolyl hydroxylases, glycosyl transferases, proteases and glycosylphosphatidylinositol-anchor synthesising enzymes. Here we examine models for proteoglycan function in animals and yeast to highlight possible strategies for determining the function(s) of individual AGPs in plants.Yolanda Gaspar, Kim L. Johnson, James A. McKenna, Antony Bacic and Carolyn J. Schult
    corecore