1,069 research outputs found
The Benefits of Using XML Technologies in Astronomical Data Retrieval and Interpretation
This paper describes a solution found during recent research that could provide improvements in the efficiency, reliability and cost of retrieving stored astronomical data. This solution uses XML Technologies in showing that when querying a variety of astronomical data sources a standardised data structure can be output into an XML query results Document. This paper shows the astronomical XMLSchema that has been partially developed in conjunction with simple custom supporting system software. It also discusses briefly possible future implications
Composite implants coated with biodegradable polymers prevent stimulating tumor progression
In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety
Target and (Astro-)WISE technologies - Data federations and its applications
After its first implementation in 2003 the Astro-WISE technology has been
rolled out in several European countries and is used for the production of the
KiDS survey data. In the multi-disciplinary Target initiative this technology,
nicknamed WISE technology, has been further applied to a large number of
projects. Here, we highlight the data handling of other astronomical
applications, such as VLT-MUSE and LOFAR, together with some non-astronomical
applications such as the medical projects Lifelines and GLIMPS, the MONK
handwritten text recognition system, and business applications, by amongst
others, the Target Holding. We describe some of the most important lessons
learned and describe the application of the data-centric WISE type of approach
to the Science Ground Segment of the Euclid satellite.Comment: 9 pages, 5 figures, Proceedngs IAU Symposium No 325 Astroinformatics
201
Tevatron Beam Halo Collimation System: Design, Operational Experience and New Methods
Collimation of proton and antiproton beams in the Tevatron collider is
required to protect CDF and D0 detectors and minimize their background rates,
to keep irradiation of superconducting magnets under control, to maintain
long-term operational reliability, and to reduce the impact of beam-induced
radiation on the environment. In this article we briefly describe the design,
practical implementation and performance of the collider collimation system,
methods to control transverse and longitudinal beam halo and two novel
collimation techniques tested in the Tevatron.Comment: 25 p
The influence of the dechanneling process on the photon emission by an ultra-relativistc positron channeling in a periodically bent crystal
We investigate, both analytically and numerically, the influence of the
dechanneling process on the parameters of undulator radiation generated by
ultra-relativistic positron channelling along a crystal plane, which is
periodically bent. The bending might be due either to the propagation of a
transverse acoustic wave through the crystal, or due to the static strain as it
occurs in superlattices. In either case the periodically bent crystal serves as
an undulator which allows to generate X-ray and gamma-radiation.
We propose the scheme for accurate quantitative treatment of the radiation in
presence of the dechanneling. The scheme includes (i) the analytic expression
for spectral-angular distribution which contains, as a parameter, the
dechanneling length, (ii) the simulation procedure of the dechanneling process
of a positron in periodically bent crystals. Using these we calculate the
dechanneling lengths of 5 GeV positrons channeling in Si, Ge and W crystals,
and the spectral-angular and spectral distributions of the undulator over broad
ranges of the photons. The calculations are performed for various parameters of
the channel bending.Comment: published in J. Phys. G: Nucl. Part. Phys. 27 (2001) 95-125,
http://www.iop.or
Total spectrum of photon emission by an ultra-relativistic positron channeling in a periodically bent crystal
We present the results of numerical calculations of the channelling and
undulator radiation generated by an ultra-relativistic positron channelling
along a crystal plane, which is periodically bent. The bending might be due
either to the propagation of a transverse acoustic wave through the crystal, or
due to the static strain as it occurs in superlattices. The periodically bent
crystal serves as an undulator. We investigate the dependence of the
intensities of both the ordinary channelling and the undulator radiations on
the parameters of the periodically bent channel with simultaneous account for
the dechannelling effect of the positrons. We demonstrate that there is a range
of parameters in which the undulator radiation dominates over the channelling
one and the characteristic frequencies of both types of radiation are well
separated. This result is important, because the undulator radiation can be
used to create a tunable source of X-ray and gamma-radiation.Comment: published in J. Phys. G: Nucl. Part. Phys. 26 (2000) L87-L95,
http://www.iop.org ; 12 pages, 4 figures, LaTe
Composite implants coated with biodegradable polymers prevent stimulating tumor progression
In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety
A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses
We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
One-dimensional Model of a Gamma Klystron
A new scheme for amplification of coherent gamma rays is proposed. The key
elements are crystalline undulators - single crystals with periodically bent
crystallographic planes exposed to a high energy beam of charged particles
undergoing channeling inside the crystals. The scheme consists of two such
crystals separated by a vacuum gap. The beam passes the crystals successively.
The particles perform undulator motion inside the crystals following the
periodic shape of the crystallographic planes. Gamma rays passing the crystals
parallel to the beam get amplified due to interaction with the particles inside
the crystals. The term `gamma klystron' is proposed for the scheme because its
operational principles are similar to those of the optical klystron. A more
simple one-crystal scheme is considered as well for the sake of comparison. It
is shown that the gamma ray amplification in the klystron scheme can be reached
at considerably lower particle densities than in the one-crystal scheme,
provided that the gap between the crystals is sufficiently large.Comment: RevTeX4, 22 pages, 4 figure
- …
