375 research outputs found
Computations in turbulent flows and off-design performance predictions for airframe-integrated scramjets
The research activity focused on two main tasks: (1) the further development of the SCRAM program and, in particular, the addition of a procedure for modeling the mechanism of the internal adjustment process of the flow, in response to the imposed thermal load across the combustor and (2) the development of a numerical code for the computation of the variation of concentrations throughout a turbulent field, where finite-rate reactions occur. The code also includes an estimation of the effect of the phenomenon called 'unmixedness'
Fatigue-inducing stimulation resolves myotonia in a drug-induced model
<p>Abstract</p> <p>Background</p> <p>Slowed muscle relaxation is the contractile hallmark of myotonia congenita, a disease caused by genetic CLC-1 chloride channel deficiency, which improves with antecedent brief contractions ("warm-up phenomenon"). It is unclear to what extent the myotonia continues to dissipate during continued repetitive contractions and how this relates temporally to muscle fatigue. Diaphragm, EDL, and soleus muscles were examined in vitro during repetitive 20 Hz and 50 Hz train stimulation in a drug-induced (9-AC) rat myotonia model.</p> <p>Results</p> <p>At the onset of stimulation, 9-AC treated diaphragm and EDL muscle had markedly prolonged half relaxation and late relaxation times (range 147 to 884 ms, 894 to 1324 ms). Half relaxation and late relaxation times reached near-normal values over the 5-10 and 10-40 subsequent contractions, respectively. In both muscles myotonia declined faster during repetitive 50 Hz than 20 Hz stimulation, and much faster than the rate of force loss during fatigue at both frequencies. Soleus muscle was resistant to the myotonic effects of 9-AC.</p> <p>Conclusions</p> <p>In a drug-induced model of mechanical myotonia, fatigue-inducing stimulation resolves the myotonia, which furthermore appears to be independent from the development of muscle fatigue.</p
A Tale of Three Cities : OmegaCAM discovers multiple sequences in the color-magnitude diagram of the Orion Nebula Cluster
Reproduced with permission from Astronomy & Astrophysics, © 2017 ESO. Published by EDP Sciences.As part of the Accretion Discs in H with OmegaCAM (ADHOC) survey, we imaged in r, i and H-alpha a region of 12x8 square degrees around the Orion Nebula Cluster. Thanks to the high-quality photometry obtained, we discovered three well-separated pre-main sequences in the color-magnitude diagram. The populations are all concentrated towards the cluster's center. Although several explanations can be invoked to explain these sequences we are left with two competitive, but intriguing, scenarios: a population of unresolved binaries with an exotic mass ratio distribution or three populations with different ages. Independent high-resolution spectroscopy supports the presence of discrete episodes of star formation, each separated by about a million years. The stars from the two putative youngest populations rotate faster than the older ones, in agreement with the evolution of stellar rotation observed in pre-main sequence stars younger than 4 Myr in several star forming regions. Whatever the final explanation, our results prompt for a revised look at the formation mode and early evolution of stars in clusters.Peer reviewedFinal Published versio
What an Agile Leader Does: The Group Dynamics Perspective
When large industrial organizations change to (or start with) an agile approach to operations, managers and some employees are supposed to be “agile leaders” often without being given a clear definition of what that comprises when building agile teams. An inductive thematic analysis was used to investigate what 15 appointed leaders actually do and perceive as challenges regarding group dynamics working with an agile approach. Team maturity, Team design, and Culture and mindset were all categories of challenges related to group dynamics that the practitioners face and manage in their work-life that are not explicitly mentioned in the more process-focused agile transformation frameworks. The results suggest that leader mitigation of these three aspects of group dynamics is essential to the success of an agile transformation
Improving demand forecasting in the air cargo handling industry: A case study
Air transportation plays a crucial role in the agile and dynamic environment of contemporary supply chains. This industry is characterized by high air cargo demand uncertainty, making forecasting extremely challenging. An in-depth case-study has been undertaken in order to explore and untangle the factors influencing demand forecasting and consequently to improve the operational performance of an Air Cargo Handling Company. It has been identified that in practice, the demand forecasting process does not provide the necessary level of accuracy, to effectively cope with the high demand uncertainty. This has a negative impact on a whole range of air cargo operations, but especially on the management of the workforce, which is the most expensive resource in the air cargo handling industry. Besides forecast inaccuracy, a range of additional hidden factors that affect operations management have been identified. A number of recommendations have been made to improve demand forecasting and workforce management
Modeling Brain Resonance Phenomena Using a Neural Mass Model
Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect
Low dose cranial irradiation-induced cerebrovascular damage is reversible in mice
BACKGROUND:
High-dose radiation-induced blood-brain barrier breakdown contributes to acute radiation toxicity syndrome and delayed brain injury, but there are few data on the effects of low dose cranial irradiation. Our goal was to measure blood-brain barrier changes after low (0.1 Gy), moderate (2 Gy) and high (10 Gy) dose irradiation under in vivo and in vitro conditions.
METHODOLOGY:
Cranial irradiation was performed on 10-day-old and 10-week-old mice. Blood-brain barrier permeability for Evans blue, body weight and number of peripheral mononuclear and circulating endothelial progenitor cells were evaluated 1, 4 and 26 weeks postirradiation. Barrier properties of primary mouse brain endothelial cells co-cultured with glial cells were determined by measurement of resistance and permeability for marker molecules and staining for interendothelial junctions. Endothelial senescence was determined by senescence associated β-galactosidase staining.
PRINCIPLE FINDINGS:
Extravasation of Evans blue increased in cerebrum and cerebellum in adult mice 1 week and in infant mice 4 weeks postirradiation at all treatment doses. Head irradiation with 10 Gy decreased body weight. The number of circulating endothelial progenitor cells in blood was decreased 1 day after irradiation with 0.1 and 2 Gy. Increase in the permeability of cultured brain endothelial monolayers for fluorescein and albumin was time- and radiation dose dependent and accompanied by changes in junctional immunostaining for claudin-5, ZO-1 and β-catenin. The number of cultured brain endothelial and glial cells decreased from third day of postirradiation and senescence in endothelial cells increased at 2 and 10 Gy.
CONCLUSION:
Not only high but low and moderate doses of cranial irradiation increase permeability of cerebral vessels in mice, but this effect is reversible by 6 months. In-vitro experiments suggest that irradiation changes junctional morphology, decreases cell number and causes senescence in brain endothelial cells
- …