74 research outputs found

    A study to explore the professional conceptualization and challenges of self-management in children and adolescents with lymphedema

    Get PDF
    Background: The aim of this study was to explore the professional experience of caring for children and adolescents with lymphedema and to explore the way in which they understand and implement self-management strategies and the influence of their own self-efficacy beliefs on this process. Methods and Results: Participants were recruited during an educational camp for children with lymphedema. Three individual semistructured focus groups were undertaken in English, French, and Italian with simultaneous translation. Data were analyzed using interpretative phenomenological analysis (IPA). Analysis of the data produced three superordinate themes: professional concepts of self-management, professional practice, and redefining the cornerstone of lymphedema care. An additional seven subthemes were as follows: readiness to self-management, professional perspectives on self-management, defining success and treatment failure, emotional burden, traditional views on complex decongestive therapy, new ways to practice, and sole practitioner versus multidisciplinary teams. Conclusions: The purpose of the study was to explore the challenges professionals face when introducing self-management to children and adolescents with lymphedema and their parents and to explore their own sense of self-efficacy in approaching this. The research allowed in-depth discussion about the ways they conceptualize self-management and faced professional challenges. The research highlighted the need to define what is considered an acceptable outcome within a complex and uncertain condition and the self-management strategies that are needed to support this

    Anti proliferative activity of ELACYT™ (CP-4055) in combination with cloretazine (VNP40101M), idarubicin, gemcitabine, irinotecan and topotecan in human leukemia and lymphoma cells

    Get PDF
    This study evaluated combination drug partners for CP-4055, the C18:1Δ9,trans unsaturated fatty acid ester of cytarabine in HL-60 and U937 cells. Growth inhibition was assessed by ATP assay and drug interaction by the combination index and three dimensional methods. Synergy was observed in HL-60 cells for simultaneous combinations of CP-4055 with gemcitabine, irinotecan and topotecan, while combinations with cloretazine (VNP40101M) and idarubicin were additive. In U937 cells, synergy was observed with gemcitabine and additivity for the other drugs. In HL-60, the IC50 concentration of CP-4055 could be reduced 10-fold and that of gemcitabine 3-fold in combination versus the agents alone, an interaction that was independent of drug sequence, ratio and exposure time. In contrast, interactions of CP-4055 with the topoisomerase inhibitors became antagonistic when the drugs were administered 24 h prior to CP-4055 and at certain drug ratios, particularly in U937 cells. In summary, CP-4055 produced additive to synergistic anti proliferative activity when combined simultaneously with drugs from four mechanistic classes in cell culture models of human leukemia and lymphoma. The impact of drug sequence and ratio on the interactions argues for incorporation of these parameters into the design of combination chemotherapy regimens

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Interaction between gemcitabine and topotecan in human non-small-cell lung cancer cells: effects on cell survival, cell cycle and pharmacogenetic profile

    Get PDF
    The pyrimidine analogue gemcitabine is an established effective agent in the treatment of non-small-cell lung cancer (NSCLC). The present study investigates whether gemcitabine would be synergistic with the topoisomerase I inhibitor topotecan against the NSCLC A549 and Calu-6 cells. Cells were treated with gemcitabine and topotecan for 1 h and the type of drug interaction was assessed using the combination index (CI). Cell cycle alterations were analysed by flow cytometry, while apoptosis was examined by the occurrence of DNA internucleosomal fragmentation, nuclear condensation and caspase-3 activation. Moreover, the possible involvement of the PI3K-Akt signalling pathway was investigated by the measurement of Akt phosphorylation. Finally, quantitative, real-time PCR (QRT-PCR) was used to study modulation of the gemcitabine-activating enzyme deoxycytidine kinase (dCK) and the cellular target enzyme ribonucleotide reductase (RR). In results, it was found that simultaneous and sequential topotecan → gemcitabine treatments were synergistic, while the reverse sequence was antagonistic in both cell lines. DNA fragmentation, nuclear condensation and enhanced caspase-3 activity demonstrated that the drug combination markedly increased apoptosis in comparison with either single agent, while cell cycle analysis showed that topotecan increased cells in S phase. Furthermore, topotecan treatment significantly decreased the amount of the activated form of Akt, and enhanced the expression of dCK (+155.0 and +115.3% in A549 and Calu-6 cells, respectively), potentially facilitating gemcitabine activity. In conclusion, these results indicate that the combination of gemcitabine and topotecan displays schedule-dependent activity in vitro against NSCLC cells. The gemcitabine → topotecan sequence is antagonistic while drug synergism is obtained with the simultaneous and the sequential topotecan → gemcitabine combinations, which are associated with induction of decreased Akt phosphorylation and increased dCK expression

    Characterization of BTBD1 and BTBD2, two similar BTB-domain-containing Kelch-like proteins that interact with Topoisomerase I

    Get PDF
    BACKGROUND: Two-hybrid screening for proteins that interact with the core domain of human topoisomerase I identified two novel proteins, BTBD1 and BTBD2, which share 80% amino acid identities. RESULTS: The interactions were confirmed by co-precipitation assays demonstrating the physical interaction of BTBD1 and BTBD2 with 100 kDa topoisomerase I from HeLa cells. Deletion mapping using two-hybrid and GST-pulldown assays demonstrated that less than the C-terminal half of BTBD1 is sufficient for binding topoisomerase I. The topoisomerase I sequences sufficient to bind BTBD2 were mapped to residues 215 to 329. BTBD2 with an epitope tag localized to cytoplasmic bodies. Using truncated versions that direct BTBD2 and TOP1 to the same cellular compartment, either the nucleus or the cytoplasm, co-localization was demonstrated in co-transfected Hela cells. The supercoil relaxation and DNA cleavage activities of topoisomerase I in vitro were affected little or none by co-incubation with BTBD2. Northern analysis revealed only a single sized mRNA for each BTBD1 and BTBD2 in all human tissues tested. Characterization of BTBD2 mRNA revealed a 255 nucleotide 90% GC-rich region predicted to encode the N-terminus. BTBD1 and BTBD2 are widely if not ubiquitously expressed in human tissues, and have two paralogs as well as putative orthologs in C. elegans and D. melanogaster. CONCLUSIONS: BTBD1 and BTBD2 belong to a small family of uncharacterized proteins that appear to be specific to animals. Epitope-tagged BTBD2 localized to cytoplasmic bodies. The characterization of BTBD1 and BTBD2 and their interaction with TOP1 is underway

    A Newly Identified Essential Complex, Dre2-Tah18, Controls Mitochondria Integrity and Cell Death after Oxidative Stress in Yeast

    Get PDF
    A mutated allele of the essential gene TAH18 was previously identified in our laboratory in a genetic screen for new proteins interacting with the DNA polymerase delta in yeast [1]. The present work shows that Tah18 plays a role in response to oxidative stress. After exposure to lethal doses of H2O2, GFP-Tah18 relocalizes to the mitochondria and controls mitochondria integrity and cell death. Dre2, an essential Fe/S cluster protein and homologue of human anti-apoptotic Ciapin1, was identified as a molecular partner of Tah18 in the absence of stress. Moreover, Ciapin1 is able to replace yeast Dre2 in vivo and physically interacts with Tah18. Our results are in favour of an oxidative stress-induced cell death in yeast that involves mitochondria and is controlled by the newly identified Dre2-Tah18 complex

    Nucleolin Inhibits G4 Oligonucleotide Unwinding by Werner Helicase

    Get PDF
    The Werner protein (WRNp), a member of the RecQ helicase family, is strongly associated with the nucleolus, as is nucleolin (NCL), an important nucleolar constituent protein. Both WRNp and NCL respond to the effects of DNA damaging agents. Therefore, we have investigated if these nuclear proteins interact and if this interaction has a possible functional significance in DNA damage repair.Here we report that WRNp interacts with the RNA-binding protein, NCL, based on immunoprecipitation, immunofluorescent co-localization in live and fixed cells, and direct binding of purified WRNp to nucleolin. We also map the binding region to the C-terminal domains of both proteins. Furthermore, treatment of U2OS cells with 15 µM of the Topoisomerase I inhibitor, camptothecin, causes the dissociation of the nucleolin-Werner complex in the nucleolus, followed by partial re-association in the nucleoplasm. Other DNA damaging agents, such as hydroxyurea, Mitomycin C, and aphidicolin do not have these effects. Nucleolin or its C-terminal fragment affected the helicase, but not the exonuclease activity of WRNp, by inhibiting WRN unwinding of G4 tetraplex DNA structures, as seen in activity assays and electrophoretic mobility shift assays (EMSA).These data suggest that nucleolin may regulate G4 DNA unwinding by WRNp, possibly in response to certain DNA damaging agents. We postulate that the NCL-WRNp complex may contain an inactive form of WRNp, which is released from the nucleolus upon DNA damage. Then, when required, WRNp is released from inhibition and can participate in the DNA repair processes

    Standardized and reproducible methodology for the comprehensive and systematic assessment of surgical resection margins during breast-conserving surgery for invasive breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The primary goal of breast-conserving surgery (BCS) is to completely excise the tumor and achieve "adequate" or "negative" surgical resection margins while maintaining an acceptable level of postoperative cosmetic outcome. Nevertheless, precise determination of the adequacy of BCS has long been debated. In this regard, the aim of the current paper was to describe a standardized and reproducible methodology for comprehensive and systematic assessment of surgical resection margins during BCS.</p> <p>Methods</p> <p>Retrospective analysis of 204 BCS procedures performed for invasive breast cancer from August 2003 to June 2007, in which patients underwent a standard BCS resection and systematic sampling of nine standardized re-resection margins (superior, superior-medial, superior-lateral, medial, lateral, inferior, inferior-medial, inferior-lateral, and deep-posterior). Multiple variables (including patient, tumor, specimen, and follow-up variables) were evaluated.</p> <p>Results</p> <p>6.4% (13/204) of patients had positive BCS specimen margins (defined as tumor at inked edge of BCS specimen) and 4.4% (9/204) of patients had close margins (defined as tumor within 1 mm or less of inked edge but not at inked edge of BCS specimen). 11.8% (24/204) of patients had at least one re-resection margin containing additional disease, independent of the status of the BCS specimen margins. 7.1% (13/182) of patients with negative BCS specimen margins (defined as no tumor cells seen within 1 mm or less of inked edge of BCS specimen) had at least one re-resection margin containing additional disease. Thus, 54.2% (13/24) of patients with additional disease in a re-resection margin would not have been recognized by a standard BCS procedure alone (P < 0.001). The nine standardized resection margins represented only 26.8% of the volume of the BCS specimen and 32.6% of the surface area of the BCS specimen.</p> <p>Conclusion</p> <p>Our methodology accurately assesses the adequacy of surgical resection margins for determination of which individuals may need further resection to the affected breast in order to minimize the potential risk of local recurrence while attempting to limit the volume of additional breast tissue excised, as well as to determine which individuals are not realistically amendable to BCS and instead need a completion mastectomy to successfully remove multifocal disease.</p

    Human DNA topoisomerase I-mediated cleavage and recombination of duck hepatitis B virus DNA in vitro.

    No full text
    In this study, we report that eukaryotic topoisomerase I (top1) can linearize the open circular DNA of duck hepatitis B virus (DHBV). Using synthetic oligonucleotides mimicking the three-strand flap DR1 region of the DHBV genome, we found that top1 cleaves the DNA plus strand in a suicidal manner, which mimics the linearization of the virion DNA. We also report that top1 can cleave the DNA minus strand at specific sites and can linearize the minus strand via a non-homologous recombination reaction. These results are consistent with the possibility that top1 can act as a DNA endo-nuclease and strand transferase and play a role in the circularization, linearization and possibly integration of viral replication intermediates

    Effect of 5637-conditioned medium and recombinant cytokines on P-glycoprotein expression in a human GM-CSF-dependent leukemic myeloid cell line.

    No full text
    International audienceThis study was aimed at evaluating the influence of 5637-conditioned medium (5637-CM) and human recombinant cytokines on both expression and function of P-glycoprotein (P-gp) in TF-1, a GM-CSF/IL-3-dependent acute myeloid leukemia cell line which constitutively expresses functional P-gp. P-gp expression was measured by flow cytometry using MRK16 monoclonal antibody. P-gp function was measured by rhodamine 123 (Rh 123) efflux kinetics. When TF-1 cells were cultured with 5637-CM (50% v/v), both P-gp expression and P-gp efflux capacity were increased in a time-dependent manner with a 4-fold increase in P-gp expression level at day 6 whereas TF-1 cell differentiation status remained unchanged as assessed by morphological studies, phenotypical and cytochemistry analysis. Recombinant cytokines including GM-CSF, G-CSF, IL-1 beta, IL-6, stem cell factor, LIF, erythropoietin, and IL-3 had no effect on P-gp expression whereas TNF alpha induced dose- and time-dependent P-gp and mdr-1 gene overexpression. However, TNF alpha-induced P-gp overexpression had no influence on P-gp efflux capacity. Furthermore, when TF-1 cells were exposed to IL-3 for periods longer than 1 month, we found that P-gp efflux capacity was increased as compared to cells cultured with GM-CSF whereas P-gp expression was unchanged. Both TNF alpha and IL-3 did not induce TF-1 differentiation. Collectively, these results suggest that cytokines may influence both expression and function of P-gp in TF-1 cells without interfering with their differentiation status. In contrast to cytokines, phorbol esters enhanced expression and efflux capacity of P-gp in parallel with TF-1 cell monocytic differentiation. Finally, our study suggests that paracrine and/or autocrine secretion of cytokines may interfere with P-gp activity in some acute myeloid leukemia cells
    corecore