1,039 research outputs found

    Temporal build-up of electromagnetically induced transparency and absorption resonances in degenerate two-level transitions

    Get PDF
    The temporal evolution of electromagnetically induced transparency (EIT) and absorption (EIA) coherence resonances in pump-probe spectroscopy of degenerate two-level atomic transition is studied for light intensities below saturation. Analytical expression for the transient absorption spectra are given for simple model systems and a model for the calculation of the time dependent response of realistic atomic transitions, where the Zeeman degeneracy is fully accounted for, is presented. EIT and EIA resonances have a similar (opposite sign) time dependent lineshape, however, the EIA evolution is slower and thus narrower lines are observed for long interaction time. Qualitative agreement with the theoretical predictions is obtained for the transient probe absorption on the 85Rb^{85}Rb D2D_{2} line in an atomic beam experiment.Comment: 10 pages, 9 figures. Submitted to Phys. Rev.

    Quantitative analysis of electronic transport through weakly-coupled metal/organic interfaces

    Full text link
    Using single-crystal transistors, we have performed a systematic experimental study of electronic transport through oxidized copper/rubrene interfaces as a function of temperature and bias. We find that the measurements can be reproduced quantitatively in terms of the thermionic emission theory for Schottky diodes, if the effect of the bias-induced barrier lowering is included. Our analysis emphasizes the role of the coupling between metal and molecules, which in our devices is weak due to the presence of an oxide layer at the surface of the copper electrodes.Comment: 4 pages, 3 figure

    Abstract Learning Frameworks for Synthesis

    Full text link
    We develop abstract learning frameworks (ALFs) for synthesis that embody the principles of CEGIS (counter-example based inductive synthesis) strategies that have become widely applicable in recent years. Our framework defines a general abstract framework of iterative learning, based on a hypothesis space that captures the synthesized objects, a sample space that forms the space on which induction is performed, and a concept space that abstractly defines the semantics of the learning process. We show that a variety of synthesis algorithms in current literature can be embedded in this general framework. While studying these embeddings, we also generalize some of the synthesis problems these instances are of, resulting in new ways of looking at synthesis problems using learning. We also investigate convergence issues for the general framework, and exhibit three recipes for convergence in finite time. The first two recipes generalize current techniques for convergence used by existing synthesis engines. The third technique is a more involved technique of which we know of no existing instantiation, and we instantiate it to concrete synthesis problems

    Cavity induced modifications to the resonance fluorescence and probe absorption of a laser-dressed V atom

    Full text link
    A cavity-modified master equation is derived for a coherently driven, V-type three-level atom coupled to a single-mode cavity in the bad cavity limit. We show that population inversion in both the bare and dressed-state bases may be achieved, originating from the enhancement of the atom-cavity interaction when the cavity is resonant with an atomic dressed-state transition. The atomic populations in the dressed state representation are analysed in terms of the cavity-modified transition rates. The atomic fluorescence spectrum and probe absorption spectrum also investigated, and it is found that the spectral profiles may be controlled by adjusting the cavity frequency. Peak suppression and line narrowing occur under appropriate conditions.Comment: 12 pages, 10 postscript figures, to be appeared in Phys. Rev.

    Susceptibility of biological stages of the horn fly, Haematobia irritans, to entomopathogenic fungi (Hyphomycetes)

    Get PDF
    The susceptibility of the egg, pupa, and adult of Haematobia irritans (L.) (Diptera: Muscidae) to isolates of the fungi Metarhizium anisopliae (Metsch.) Sor., Beauveria bassiana (Bals.) Vuill., and Paecilomyces fumosoroseus (Wize) Brown and Smith, was evaluated under laboratory conditions. Groups of 20 eggs than 4 h old, pupae less than 48h old and adults were sprayed with a conidial suspension of each isolate. Eggs, pupae and adults of horn fly were susceptible to these entomopathogenic fungi. For treated eggs, the isolates Ma3, Ma 15, Ma25, Pfr1, and Pfr8 reduced adult emergence to 3.8% to 6.3% in comparison with the control (72%). The mortality of pupae infected by the isolates Ma2, Ma25, and Pfr10 ranged between 50% and 71.3%. Mortality of adults after treatment with the isolates Ma6, Ma 10, Ma 14, Ma 15, Pfr 1, Pfr 9, Pfr 10, Pfr 11, and Pfr12 were higher than 90%. The isolate Ma6 produced the lowest LC(50) against adult horn flies (8.08 &times 10(2)conidia/ml). These findings supported the hypotheses that isolates of M. anisopliae, and P. fumosoroseus are pathogenic against the different biological stages of horn flies by reducing adult emergence when applied on groups of eggs and pupae, and producing mortality when applied to adults

    Effects Of Length, Complexity, And Grammatical Correctness On Stuttering In Spanish-Speaking Preschool Children

    Get PDF
    Purpose: To explore the effects of utterance length, syntactic complexity, and grammatical correctness on stuttering in the spontaneous speech of young, monolingual Spanish-speaking children. Method: Spontaneous speech samples of 11 monolingual Spanish-speaking children who stuttered, ages 35 to 70 months, were examined. Mean number of syllables, total number of clauses, utterance complexity (i.e., containing no clauses, simple clauses, or subordinate and/or conjoined clauses), and grammatical correctness (i.e., the presence or absence of morphological and syntactical errors) in stuttered and fluent utterances were compared. Results: Findings revealed that stuttered utterances in Spanish tended to be longer and more often grammatically incorrect, and contain more clauses, including more subordinate and/or conjoined clauses. However, when controlling for the interrelatedness of syllable number and clause number and complexity, only utterance length and grammatical incorrectness were significant predictors of stuttering in the spontaneous speech of these Spanish-speaking children. Use of complex utterances did not appear to contribute to the prediction of stuttering when controlling for utterance length. Conclusions: Results from the present study were consistent with many earlier reports of English-speaking children. Both length and grammatical factors appear to affect stuttering in Spanish-speaking children. Grammatical errors, however, served as the greatest predictor of stuttering.Communication Sciences and Disorder

    Spinal neurons bursting in phase with fictive scratching are not related to spontaneous cord dorsum potentials

    Get PDF
    Spontaneous cord dorsum potentials (spontaneous CDPs) are produced by the activation of dorsal horn neurons distributed along the L4 to S1 spinal cord segments, in Rexed's laminae III-VI, in the same region in which there are interneurons rhythmically bursting during fictive scratching in cats. An interesting observation is that spontaneous CDPs are not rhythmically superimposed on the sinusoidal CDPs generated during fictive scratching episodes, thus suggesting that the interneurons producing both types of CDPs belong to different spinal circuits. In order to provide experimental data to support this hypothesis, we recorded unitary activity of neurons in the L6 spinal cord segment. We found that the neurons firing rhythmically during the sinusoidal CDPs associated with the extensor, flexor or intermediate phases of scratching were not synchronized with the spontaneous CDPs. Moreover, we found that the neurons firing during the spontaneous CDPs were not synchronized with the sinusoidal CDPs. These results suggest that the neurons involved in the occurrence of spontaneous CDPs are not part of the spinal cord central pattern generators (CPGs). This study will be relevant for understanding the relationships between the spinal cord neuronal populations firing spontaneously and the CPGs, in the intact and injured spinal cord. © 2014 IBRO

    Pattern and process in Amazon tree turnover, 1976-2001

    Get PDF
    Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that long-acting and widespread environmental changes are stimulating the growth and productivity of Amazon forests

    Electromagnetically Induced Transparency and Slow Light with Optomechanics

    Get PDF
    Controlling the interaction between localized optical and mechanical excitations has recently become possible following advances in micro- and nano-fabrication techniques. To date, most experimental studies of optomechanics have focused on measurement and control of the mechanical subsystem through its interaction with optics, and have led to the experimental demonstration of dynamical back-action cooling and optical rigidity of the mechanical system. Conversely, the optical response of these systems is also modified in the presence of mechanical interactions, leading to strong nonlinear effects such as Electromagnetically Induced Transparency (EIT) and parametric normal-mode splitting. In atomic systems, seminal experiments and proposals to slow and stop the propagation of light, and their applicability to modern optical networks, and future quantum networks, have thrust EIT to the forefront of experimental study during the last two decades. In a similar fashion, here we use the optomechanical nonlinearity to control the velocity of light via engineered photon-phonon interactions. Our results demonstrate EIT and tunable optical delays in a nanoscale optomechanical crystal device, fabricated by simply etching holes into a thin film of silicon (Si). At low temperature (8.7 K), we show an optically-tunable delay of 50 ns with near-unity optical transparency, and superluminal light with a 1.4 microseconds signal advance. These results, while indicating significant progress towards an integrated quantum optomechanical memory, are also relevant to classical signal processing applications. Measurements at room temperature and in the analogous regime of Electromagnetically Induced Absorption (EIA) show the utility of these chip-scale optomechanical systems for optical buffering, amplification, and filtering of microwave-over-optical signals.Comment: 15 pages, 9 figure
    corecore