1 research outputs found

    de Haas-van Alphen Effect in the Two-Dimensional and the Quasi-Two-Dimensional Systems

    Full text link
    We study the de Haas-van Alphen (dHvA) oscillation in two-dimensional and quasi-two-dimensional systems. We give a general formula of the dHvA oscillation in two-dimensional multi-band systems. By using this formula, the dHvA oscillation and its temperature-dependence for the two-band system are shown. By introducing the interlayer hopping tzt_z, we examine the crossover from the two-dimension, where the oscillation of the chemical potential plays an important role in the magnetization oscillation, to the three-dimension, where the oscillation of the chemical potential can be neglected as is well know as the Lifshitz and Kosevich formula. The crossover is seen at 4tz∼8tabH/ϕ04 t_z \sim 8 ta b H /\phi_0, where a and b are lattice constants, ϕ0\phi_0 is the flux quantum and 8t is the width of the total energy band. We also study the dHvA oscillation in quasi-two-dimensional magnetic breakdown systems. The quantum interference oscillations such as β−α\beta-\alpha oscillation as well as the fundamental oscillations are suppressed by the interlayer hopping tzt_z, while the β+α\beta+\alpha oscillation gradually increases as tzt_z increases and it has a maximum at tz/t≈0.025t_z/t\approx 0.025. This interesting dependence on the dimensionality can be observed in the quasi-two-dimensional organic conductors with uniaxial pressure.Comment: 11 pages, 14 figure
    corecore