73 research outputs found

    Multiple Novel Nesprin-1 and Nesprin-2 Variants Act as Versatile Tissue-Specific Intracellular Scaffolds

    Get PDF
    <div><h3>Background</h3><p>Nesprins (<u>N</u>uclear <u>e</u>nvelope <u>s</u>pectrin-<u>r</u>epeat <u>p</u>roteins) are a novel family of giant spectrin-repeat containing proteins. The nesprin-1 and nesprin-2 genes consist of 146 and 116 exons which encode proteins of ∼1mDa and ∼800 kDa is size respectively when all the exons are utilised in translation. However emerging data suggests that the nesprins have multiple alternative start and termination sites throughout their genes allowing the generation of smaller isoforms.</p> <h3>Results</h3><p>In this study we set out to identify novel alternatively transcribed nesprin variants by screening the EST database and by using RACE analysis to identify cDNA ends. These two methods provided potential hits for alternative start and termination sites that were validated by PCR and DNA sequencing. We show that these alternative sites are not only expressed in a tissue specific manner but by combining different sites together it is possible to create a wide array of nesprin variants. By cloning and expressing small novel nesprin variants into human fibroblasts and U2OS cells we show localization to actin stress-fibres, focal adhesions, microtubules, the nucleolus, nuclear matrix and the nuclear envelope (NE). Furthermore we show that the sub-cellular localization of individual nesprin variants can vary depending on the cell type, suggesting any single nesprin variant may have different functions in different cell types.</p> <h3>Conclusions</h3><p>These studies suggest nesprins act as highly versatile tissue specific intracellular protein scaffolds and identify potential novel functions for nesprins beyond cytoplasmic-nuclear coupling. These alternate functions may also account for the diverse range of disease phenotypes observed when these genes are mutated.</p> </div

    Intracranial V. cholerae Sialidase Protects against Excitotoxic Neurodegeneration

    Get PDF
    Converging evidence shows that GD3 ganglioside is a critical effector in a number of apoptotic pathways, and GM1 ganglioside has neuroprotective and noΓΆtropic properties. Targeted deletion of GD3 synthase (GD3S) eliminates GD3 and increases GM1 levels. Primary neurons from GD3Sβˆ’/βˆ’ mice are resistant to neurotoxicity induced by amyloid-Ξ² or hyperhomocysteinemia, and when GD3S is eliminated in the APP/PSEN1 double-transgenic model of Alzheimer's disease the plaque-associated oxidative stress and inflammatory response are absent. To date, no small-molecule inhibitor of GD3S exists. In the present study we used sialidase from Vibrio cholerae (VCS) to produce a brain ganglioside profile that approximates that of GD3S deletion. VCS hydrolyzes GD1a and complex b-series gangliosides to GM1, and the apoptogenic GD3 is degraded. VCS was infused by osmotic minipump into the dorsal third ventricle in mice over a 4-week period. Sensorimotor behaviors, anxiety, and cognition were unaffected in VCS-treated mice. To determine whether VCS was neuroprotective in vivo, we injected kainic acid on the 25th day of infusion to induce status epilepticus. Kainic acid induced a robust lesion of the CA3 hippocampal subfield in aCSF-treated controls. In contrast, all hippocampal regions in VCS-treated mice were largely intact. VCS did not protect against seizures. These results demonstrate that strategic degradation of complex gangliosides and GD3 can be used to achieve neuroprotection without adversely affecting behavior

    Promotion of Dendritic Growth by CPG15, an Activity-Induced Signaling Molecule

    No full text

    Promotion of dendritic growth by CPG15, an activity-induced signaling molecule

    No full text
    Activity-independent and activity-dependent mechanisms work in concert to regulate neuronal growth, ensuring the formation of accurate synaptic connections. CPG15, a protein regulated by synaptic activity, functions as a cell-surface growth-promoting molecule in vivo. In Xenopus laevis, CPG15 enhanced dendritic arbor growth in projection neurons, with no effect on interneurons. CPG15 controlled growth of neighboring neurons through an intercellular signaling mechanism that requires its glycosylphosphatidylinositol link. CPG15 may represent a new class of activity-regulated, membrane-bound, growth-promoting proteins that permit exquisite spatial and temporal control of neuronal structure

    Regulation of cpg15 expression during single whisker experience in the barrel cortex of adult mice

    No full text
    Regulation of gene transcription by neuronal activity is thought to be key to the translation of sensory experience into long-term changes in synaptic structure and function. Here we show that cpgI5, a gene encoding an extracellular signaling molecule that promotes dendritic and axonal growth and synaptic maturation, is regulated in the somatosensory cortex by sensory experience capable of inducing cortical plasticity. Using in situ hybridization, we monitored cpgI5 expression in 4-week-old mouse barrel cortex after trimming all whiskers except D1. We found that cpgI5 expression is depressed in the deprived barrels and enhanced in the barrel column corresponding to the spared D1 whisker. Changes in cpgI5 mRNA levels first appear in layer IV, peak 12 h after deprivation, and then decline rapidly. In layers II/III, changes in cpgI5 expression appear later, peak at 24 h, and persist for days. Induction of cpgI5 expression is significantly diminished in adolescent as well as adult CREB knockout mice. cpgI5's spatio-temporal expression pattern and its regulation by CREB are consistent with a role in experience-dependent plasticity of cortical circuits. Our results suggest that local structural and/or synaptic changes may be a mechanism by which the adult cortex can adapt to peripheral manipulations. (c) 2005 Wiley Periodicals, Inc

    Developmental regulation of CPG15 expression in Xenopus

    No full text
    Mechanisms controlling dendritic arbor formation affect the establishment of neuronal circuits. Candidate plasticity gene 15 (CPG15) is a glycosylphosphatidyl inositol (GPI)-linked activity-induced protein that has been shown to function as an intercellular signaling molecule that can promote the morphological and physiological development of the Xenopus retinotectal system. A thorough understanding of CPG15 function requires knowledge of the spatiotemporal expression of the endogenous protein. We therefore cloned Xenopus cpg15 and used RNA in situ hybridization and immunohistochemistry to determine the pattern of CPG15 expression. cpg15 mRNA and CPG15 protein are first detectable in the developing spinal cord and become widespread as development proceeds. CPG15 is expressed in sensory regions of the brain, including the visual, auditory, and olfactory systems. Within the retina, CPG15 is only expressed in retinal ganglion cells. CPG15 protein is concentrated in axon tracts, including retinal axons. These data support a model in which CPG15 expressed in retinal ganglion cells is trafficked to retinal axone, where it modulates postsynaptic dendritic arbor elaboration, and synaptic maturation

    Neuron class-specific responses govern adaptive myelin remodeling in the neocortex

    No full text
    Β© 2020 American Association for the Advancement of Science. All rights reserved. Myelin plasticity is critical for neurological function, including learning and memory. However, it is unknown whether this plasticity reflects uniform changes across all neuronal subtypes, or whether myelin dynamics vary between neuronal classes to enable fine-tuning of adaptive circuit responses. We performed in vivo two-photon imaging of myelin sheaths along single axons of excitatory callosal neurons and inhibitory parvalbumin-expressing interneurons in adult mouse visual cortex. We found that both neuron types show homeostatic myelin remodeling under normal vision. However, monocular deprivation results in adaptive myelin remodeling only in parvalbumin-expressing interneurons. An initial increase in elongation of myelin segments is followed by contraction of a separate cohort of segments. This data indicates that distinct classes of neurons individualize remodeling of their myelination profiles to diversify circuit tuning in response to sensory experience
    • …
    corecore