2,086 research outputs found

    A global synthesis reveals biodiversity-mediated benefits for crop production

    Get PDF
    Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society. [Abstract copyright: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

    The Rise of the Resilient Local Authority?

    Get PDF
    The term resilience is increasingly being utilised within the study of public policy to depict how individuals, communities and organisations can adapt, cope, and ‘bounce back’ when faced with external shocks such as climate change, economic recession and cuts in public expenditure. In focussing on the local dimensions of the resilience debate, this article argues that the term can provide useful insights into how the challenges facing local authorities in the UK can be reformulated and reinterpreted. The article also distinguishes between resilience as ‘recovery’ and resilience as ‘transformation’, with the latter's focus on ‘bouncing forward’ from external shocks seen as offering a more radical framework within which the opportunities for local innovation and creativity can be assessed and explained. While also acknowledging some of the weaknesses of the resilience debate, the dangers of conceptual ‘stretching’, and the extent of local vulnerabilities, the article highlights a range of examples where local authorities – and crucially, local communities – have enhanced their adaptive capacity, within existing powers and responsibilities. From this viewpoint, some of the barriers to the development of resilient local government are not insurmountable, and can be overcome by ‘digging deep’ to draw upon existing resources and capabilities, promoting a strategic approach to risk, exhibiting greater ambition and imagination, and creating space for local communities to develop their own resilience

    Time for T? Immunoinformatics addresses the challenges of vaccine design for neglected tropical and emerging infectious diseases

    Get PDF
    Vaccines have been invaluable for global health, saving lives and reducing healthcare costs, while also raising the quality of human life. However, newly emerging infectious diseases (EID) and more well-established tropical disease pathogens present complex challenges to vaccine developers; in particular, neglected tropical diseases, which are most prevalent among the world’s poorest, include many pathogens with large sizes, multistage life cycles and a variety of nonhuman vectors. EID such as MERS-CoV and H7N9 are highly pathogenic for humans. For many of these pathogens, while their genomes are available, immune correlates of protection are currently unknown. These complexities make developing vaccines for EID and neglected tropical diseases all the more difficult. In this review, we describe the implementation of an immunoinformatics-driven approach to systematically search for key determinants of immunity in newly available genome sequence data and design vaccines. This approach holds promise for the development of 21st century vaccines, improving human health everywhere

    Theory of Bose-Einstein condensation in trapped gases

    Full text link
    The phenomenon of Bose-Einstein condensation of dilute gases in traps is reviewed from a theoretical perspective. Mean-field theory provides a framework to understand the main features of the condensation and the role of interactions between particles. Various properties of these systems are discussed, including the density profiles and the energy of the ground state configurations, the collective oscillations and the dynamics of the expansion, the condensate fraction and the thermodynamic functions. The thermodynamic limit exhibits a scaling behavior in the relevant length and energy scales. Despite the dilute nature of the gases, interactions profoundly modify the static as well as the dynamic properties of the system; the predictions of mean-field theory are in excellent agreement with available experimental results. Effects of superfluidity including the existence of quantized vortices and the reduction of the moment of inertia are discussed, as well as the consequences of coherence such as the Josephson effect and interference phenomena. The review also assesses the accuracy and limitations of the mean-field approach.Comment: revtex, 69 pages, 38 eps figures, new version with more references, new figures, various changes and corrections, for publ. in Rev. Mod. Phys., available also at http://www-phys.science.unitn.it/bec/BEC.htm

    European micronutrient recommendations aligned: a general framework developed by EURRECA

    Get PDF
    Background: In Europe, micronutrient recommendations have been established by (inter)national committees of experts and are used by public health-policy decision makers to monitor and assess the adequacy of the diets of population groups. Current micronutrient recommendations are, however, heterogeneous, whereas the scientific basis for this is not obvious. Alignment of setting micronutrient recommendations is necessary to improve the transparency of the process, the objectivity and reliability of recommendations that are derived by diverse regional and (inter)national bodies. Objective: This call for alignment of micronutrient recommendations is a direct result of the current sociopolitical climate in Europe and uncovers the need for an institutional architecture. There is a need for evidence-based policy making, transparent decision making, stakeholder involvement and alignment of policies across Europe. Results: In this paper, we propose a General Framework that describes the process leading from assessing nutritional requirements to policy applications, based on evidence from science, stakeholder interests and the sociopolitical context. The framework envisions the derivation of nutrient recommendations as scientific methodology, embedded in a policy-making process that also includes consumer issues, and acknowledges the influences of the wider sociopolitical context by distinguishing the principal components of the framework: (a) defining the nutrient requirements for health, (b) setting nutrient recommendations, (c) policy options and (d) policy applications. Conclusion: The General Framework can serve as a basis for a systematic and transparent approach to the development and review of micronutrient requirements in Europe, as well as the decision making of scientific advisory bodies, policy makers and stakeholders involved in this process of assessing, developing and translating these recommendations into public health nutrition policy. European Journal of Clinical Nutrition (201 0) 64, S2-510; doi:10.1038/ejcn.2010.5

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Prioritizing micronutrients for the purpose of reviewing their requirements: a protocol developed by EURRECA

    Get PDF
    Background: The EURRECA (EURopean micronutrient RECommendations Aligned) Network of Excellence (http://www.eurreca.org) is working towards the development of aligned recommendations. A protocol was required to assign resources to those micronutrients for which recommendations are most in need of alignment. Methods: Three important 'a priori' criteria were the basis for ranking micronutrients: (A) the amount of new scientific evidence, particularly from randomized controlled trials; (B) the public health relevance of micronutrients; (C) variations in current micronutrient recommendations. A total of 28 micronutrients were included in the protocol, which was initially undertaken centrally by one person for each of the different population groups defined in EURRECA: infants, children and adolescents, adults, elderly, pregnant and lactating women, and low income and immigrant populations. The results were then reviewed and refined by EURRECA's population group experts. The rankings of the different population groups were combined to give an overall average ranking of micronutrients. Results: The 10 highest ranked micronutrients were vitamin D, iron, folate, vitamin B12, zinc, calcium, vitamin C, selenium, iodine and copper. Conclusions: Micronutrient recommendations should be regularly updated to reflect new scientific nutrition and public health evidence. The strategy of priority setting described in this paper will be a helpful procedure for policy makers and scientific advisory bodies. European Journal of Clinical Nutrition (2010) 64, S19-530; doi:10.1038/ejcn.2010.5

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
    corecore