4,980 research outputs found
Unveiling Sources of Heating in the Vicinity of the Orion BN/KL Hot Core as Traced by Highly Excited Inversion Transitions of Ammonia
Using the Expanded Very Large Array, we have mapped the vicinity of the Orion
BN/KL Hot Core with sub-arcsecond angular resolution in seven metastable
inversion transitions of ammonia: (J,K)=(6,6) to (12,12). This emission comes
from levels up to 1500 K above the ground state, enabling identification of
source(s) responsible for heating the region. We used this multi-transition
dataset to produce images of the rotational/kinetic temperature and the column
density of ammonia for ortho and para species separately and on a
position-by-position basis. We find rotational temperature and column density
in the range 160-490 K and (1-4)x10^17 cm^-2, respectively. Our
spatially-resolved images show that the highest (column) density and hottest
gas is found in a northeast-southwest elongated ridge to the southeast of
Source I. We have also measured the ortho-para ratio of ammonia, estimated to
vary in the range 0.9-1.6. Enhancement of ortho with respect to para and the
offset of hot ammonia emission peaks from known (proto)stellar sources provide
evidence that the ammonia molecules have been released from dust grains into
the gas-phase through the passage of shocks and not by stellar radiation. We
propose that the combined effect of Source I's proper motion and its
low-velocity outflow impinging on a pre-existing dense medium is responsible
for the excitation of ammonia and the Orion Hot Core. Finally, we found for the
first time evidence of a slow (5 km/s) and compact (1000 AU) outflow towards
IRc7.Comment: To appear in Astrophysical Journal Letters Special Issue on the EVLA.
8 pages, 4 figure
ALMA view of the circumstellar environment of the post-common-envelope-evolution binary system HD101584
We study the circumstellar evolution of the binary HD101584, consisting of a
post-AGB star and a low-mass companion, which is most likely a
post-common-envelope-evolution system. We used ALMA observations of the 12CO,
13CO, and C18O J=2-1 lines and the 1.3mm continuum to determine the morphology,
kinematics, masses, and energetics of the circumstellar environment. The
circumstellar medium has a bipolar hour-glass structure, seen almost pole-on,
formed by an energetic jet, about 150 km/s. We conjecture that the
circumstellar morphology is related to an event that took place about 500 year
ago, possibly a capture event where the companion spiraled in towards the AGB
star. However, the kinetic energy of the accelerated gas exceeds the released
orbital energy, and, taking into account the expected energy transfer
efficiency of the process, the observed phenomenon does not match current
common-envelope scenarios. This suggests that another process must augment, or
even dominate, the ejection process. A significant amount of material resides
in an unresolved region, presumably in the equatorial plane of the binary
system.Comment: A&A Letter, accepte
GPS Carrier Tracking Loop Performance in the presence of Ionospheric Scintillations
The performance of several GPS carrier tracking loops
is evaluated using wideband GPS data recorded during
strong ionospheric scintillations. The aim of this study is
to determine the loop structures and parameters that enable
good phase tracking during the power fades and phase
dynamics induced by scintillations. Constant-bandwidth
and variable-bandwidth loops are studied using theoretical
models, simulation, and tests with actual GPS signals.
Constant-bandwidth loops with loop bandwidths near 15
Hz are shown to lose phase lock during scintillations. Use
of the decision-directed discriminator reduces the carrier
lock threshold by ∼1 dB relative to the arctangent and conventional Costas discriminators. A proposed variablebandwidth
loop based on a Kalman filter reduces the carrier
lock threshold by more than 7 dB compared to a 15-Hz
constant-bandwidth loop. The Kalman filter-based strategy
employs a soft-decision discriminator, explicitly models
the effects of receiver clock noise, and optimally adapts
the loop bandwidth to the carrier-to-noise ratio. In extensive
simulation and in tests using actual wideband GPS
data, the Kalman filter PLL demonstrates improved cycle
slip immunity relative to constant bandwidth PLLs.Aerospace Engineering and Engineering Mechanic
Recommended from our members
Assessing the Spoofing Threat: Development of a Portable GPS Civilian Spoofer
A portable civilian GPS spoofer is implemented on a digital
signal processor and used to characterize spoofing effects and develop defenses against civilian spoofing. This
work is intended to equip GNSS users and receiver manufacturers
with authentication methods that are effective
against unsophisticated spoofing attacks. The work also
serves to refine the civilian spoofing threat assessment
by demonstrating the challenges involved in mounting a
spoofing attack.Aerospace Engineering and Engineering Mechanic
A Documentary of High-Mass Star Formation: Probing the Dynamical Evolution of Orion Source I on 10-100 AU Scales using SiO Masers
A comprehensive picture of high-mass star formation has remained elusive, in
part because examples of high-mass YSOs tend to be relatively distant, deeply
embedded, and confused with other emission sources. These factors have impeded
dynamical investigations within tens of AU of high-mass YSOs--scales that are
critical for probing the interfaces where outflows from accretion disks are
launched and collimated. Using observations of SiO masers obtained with the VLA
and the VLBA, the KaLYPSO project is overcoming these limitations by mapping
the structure and dynamical/temporal evolution of the material 10-1000 AU from
the nearest high-mass YSO: Radio Source I in the Orion BN/KL region. Our data
include ~40 epochs of VLBA observations over a several-year period, allowing us
to track the proper motions of individual SiO maser spots and to monitor
changes in the physical conditions of the emitting material with time.
Ultimately these data will provide 3-D maps of the outflow structure over
approximately 30% of the outflow crossing time. Here we summarize recent
results from the KaLYPSO project, including evidence that high-mass star
formation is occurring via disk-mediated accretion.Comment: 5 pages; to appear in the proceedings of IAU Symposium 242,
Astrophysical Masers and their Environments, ed. J. Chapman & W. Baa
Recommended from our members
Analysis of Ionospheric Scintillations using Wideband GPS L1 C/A Signal Data
A non-real-time GPS receiver has been developed and
tested for use in scintillation analysis. The receiver consists
of a digital storage receiver and non-real-time software
acquisition and tracking algorithms. The goal of
this work is to shed light on the behavior of strongly
scintillating signals: signals which cause conventional
GPS receivers to lose carrier lock.
The receiver collects wideband GPS L1 digital data sampled at 5.7 MHz using an RF front-end and stores it
on disk for post-processing. It processes the data off-line
to determine carrier signal amplitude and phase variations
during scintillations. The main processing algorithms
are traditional code delay and carrier frequency
acquisition algorithms and special signal processing algorithms
that effectively function as a delay-locked loop
and phase-locked loop. The tracking algorithms use
non-causal smoothing techniques in order to optimally
reconstruct the phase and amplitude variations of a
scintillating signal. These techniques are robust against
the deep power fades and strong phase fluctuations
characteristic of scintillating signals.
To test the receiver, scintillation data were collected
in Cauchoeira Paulista, Brazil, from December 4 to 6,
2003. The data set spans several hours and includes
times when one or more satellite signals are scintillating.
The smoothing algorithm has been used to determine
the carrier amplitude and phase time histories
of the scintillating signals along with the distortion of
the pseudorandom noise (PRN) code’s autocorrelation
function. These quantities provide a characterization
of scintillation that can be used to study the physics of
scintillations or to provide off-line test cases to evaluate
a tracking algorithm’s ability to maintain signal lock
during scintillations.Aerospace Engineering and Engineering Mechanic
Toward a New Distance to the Active Galaxy NGC 4258: II. Centripetal Accelerations and Investigation of Spiral Structure
We report measurements of centripetal accelerations of maser spectral
components of NGC 4258 for 51 epochs spanning 1994 to 2004. This is the second
paper of a series, in which the goal is determination of a new geometric maser
distance to NGC 4258 accurate to possibly ~3%. We measure accelerations using a
formal analysis method that involves simultaneous decomposition of maser
spectra for all epochs into multiple, Gaussian components. Components are
coupled between epochs by linear drifts (accelerations) from their centroid
velocities at a reference epoch. For high-velocity emission, accelerations lie
in the range -0.7 to +0.7 km/s/yr indicating an origin within 13 degrees of the
disk midline (the perpendicular to the line-of-sight to the black hole).
Comparison of high-velocity emission projected positions in VLBI images, with
those derived from acceleration data, provides evidence that masers trace real
gas dynamics. High-velocity emission accelerations do not support a model of
trailing shocks associated with spiral arms in the disk. However, we find
strengthened evidence for spatial periodicity in high-velocity emission, of
wavelength 0.75 mas. This supports suggestions of spiral structure due to
density waves in the nuclear accretion disk of an active galaxy. Accelerations
of low-velocity (systemic) emission lie in the range 7.7 to 8.9 km/s/yr,
consistent with emission originating from a concavity where the thin, warped
disk is tangent to the line-of-sight. A trend in accelerations of low-velocity
emission as a function of Doppler velocity may be associated with disk geometry
and orientation, or with the presence of spiral structure.Comment: Accepted to ApJ, 48 pages and 20 figure
- …
