615 research outputs found

    Modeling Heatshield Erosion Due to Dust Particle Impacts for a Martian Entry Vehicle

    Get PDF
    Because planetary missions to Mars take years from initial design to arrival at Mars, and because of the unpredictability of major global dust storms, the de-sign of the thermal protection system (TPS) of a Mars entry vehicle requires an estimation for the potential damage caused by dust particle impacts on the heat-shield. This paper will review previous analytical and experimental approaches to modeling dust particle ero-sion and will compare the legacy models against more modern computational techniques and new dust ero-sion models that will be based on upcoming experi-ments in the German Aerospace Center (DLR) GBK facility. The various models will be compared by incorporating them into the Icarus material response code applied to a representative vehicle entering the Martian atmosphere

    Relationship between bullet diameter and bullet defect diameter in human calvariums

    Get PDF
    Existing literature on the relationship between bullet diameter and bullet defect diameter in the human calvarium is summarized and discussed. The hypothesis, derived from the literature, that bullet deformation influences bullet defect diameter was studied in a small controlled experiment. The mean defect size caused by non-deforming projectiles was found to be smaller than the mean defect size caused by deforming projectiles of equal original mass and size. The p value of the difference between the two means, measured in two different ways, was found to be 0.002 for both in a Mann-Whitney U test and was significant if the confidence level is set at 5%

    Regulatory interactions between two actin nucleators, Spire and Cappuccino

    Get PDF
    Spire and Cappuccino are actin nucleation factors that are required to establish the polarity of Drosophila melanogaster oocytes. Their mutant phenotypes are nearly identical, and the proteins interact biochemically. We find that the interaction between Spire and Cappuccino family proteins is conserved across metazoan phyla and is mediated by binding of the formin homology 2 (FH2) domain from Cappuccino (or its mammalian homologue formin-2) to the kinase noncatalytic C-lobe domain (KIND) from Spire. In vitro, the KIND domain is a monomeric folded domain. Two KIND monomers bind each FH2 dimer with nanomolar affinity and strongly inhibit actin nucleation by the FH2 domain. In contrast, formation of the Spire–Cappuccino complex enhances actin nucleation by Spire. In Drosophila oocytes, Spire localizes to the cortex early in oogenesis and disappears around stage 10b, coincident with the onset of cytoplasmic streaming

    Spectroscopy of a Cooper-Pair box in the Autler-Townes configuration

    Get PDF
    A theoretical spectroscopic analysis of a microwave driven superconducting charge qubit (Cooper-pair box coupled) to an RLC oscillator model is performed. By treating the oscillator as a probe through the backreaction effect of the qubit on the oscillator circuit, we extract frequency splitting features analogous to the Autler-Townes effect from quantum optics, thereby extending the analogies between superconducting and quantum optical phenomenology. These features are found in a frequency band that avoids the need for high frequency measurement systems and therefore may be of use in qubit characterization and coupling schemes. In addition we find this frequency band can be adjusted to suit an experimental frequency regime by changing the oscillator frequency.Comment: 13 pages, 7 figures. v2: Revised version after referee comments. Accepted for publication by Physical Review

    Comparison and interpretation of impressed marks left by a firearm on cartridge cases - Towards an operational implementation of a likelihood ratio based technique.

    Get PDF
    Firearm examination is subject to increased scrutiny regarding its foundational validity and inherent subjective nature. The increased use of automatic comparison systems may help to reduce subjectivity. In this paper, we present the performance and limits of an automatic comparison system that assigns a weight to the forensic findings for the comparisons between firing pin marks, breechface marks, or a combination of the two. This weight is expressed by a likelihood ratio (LR) based on 3D topographical measurements coupled with a bi-dimensional statistical model. As the performance of such systems may depend on the reference databases used to inform the model, we investigated the impact of the brand of ammunition and the number of samples. We show that reference databases used to calculate LRs should ideally consist of the same type of ammunition as is seen in the case under investigation and that 7 specimens fired by the same firearm are enough to obtain rates of misleading evidence of a similar magnitude compared to those obtained when far more specimens (60) are used. Additionally, the automatic system was used to assess the outcomes of 7 cases with known same-source or different-source ground truths. These cases were also examined by 8 qualified firearm examiners. In all cases, the experts' appraisals were in line with the ground truth. The automatic system showed some limitations in cases were the data were not sufficient to calculate a robust LR, but also that it can assist and enhance the examiners in their decision process

    Plasmonic Cloaking of Cylinders: Finite Length, Oblique Illumination and Cross-Polarization Coupling

    Full text link
    Metamaterial cloaking has been proposed and studied in recent years following several interesting approaches. One of them, the scattering-cancellation technique, or plasmonic cloaking, exploits the plasmonic effects of suitably designed thin homogeneous metamaterial covers to drastically suppress the scattering of moderately sized objects within specific frequency ranges of interest. Besides its inherent simplicity, this technique also holds the promise of isotropic response and weak polarization dependence. Its theory has been applied extensively to symmetrical geometries and canonical 3D shapes, but its application to elongated objects has not been explored with the same level of detail. We derive here closed-form theoretical formulas for infinite cylinders under arbitrary wave incidence, and validate their performance with full-wave numerical simulations, also considering the effects of finite lengths and truncation effects in cylindrical objects. In particular, we find that a single isotropic (idealized) cloaking layer may successfully suppress the dominant scattering coefficients of moderately thin elongated objects, even for finite lengths comparable with the incident wavelength, providing a weak dependence on the incidence angle. These results may pave the way for application of plasmonic cloaking in a variety of practical scenarios of interest.Comment: 17 pages, 11 figures, 2 table

    Coproductive capacities: rethinking science-governance relations in a diverse world

    No full text
    Tackling major environmental change issues requires effective partnerships between science and governance, but relatively little work in this area has examined the diversity of settings from which such partnerships may, or may not, emerge. In this special feature we draw on experiences from around the world to demonstrate and investigate the consequences of diverse capacities and capabilities in bringing science and governance together. We propose the concept of coproductive capacities as a useful new lens through which to examine these relations. Coproductive capacity is “the combination of scientific resources and governance capability that shapes the extent to which a society, at various levels, can operationalize relationships between scientific and public, private, and civil society institutions and actors to effect scientifically-informed social change.” This recasts the relationships between science and society from notions of “gaps” to notions of interconnectedness and interplay (coproduction); alongside the societal foundations that shape what is or is not possible in that dynamic connection (capacities). The articles in this special feature apply this concept to reveal social, political, and institutional conditions that both support and inhibit high-quality environmental governance as global issues are tackled in particular places. Across these articles we suggest that five themes emerge as important to understanding coproductive capacity: history, experience, and perceptions; quality of relationships (especially in suboptimal settings); disjunct across scales; power, interests, and legitimacy; and alternative pathways for environmental governance. Taking a coproductive capacities perspective can help us identify which interventions may best enable scientifically informed, but locally sensitive approaches to environmental governance
    corecore