11,554 research outputs found

    Universal dynamics on the way to thermalisation

    Get PDF
    It is demonstrated how a many-body system far from thermal equilibrium can exhibit universal dynamics in passing a non-thermal fixed point. As an example, the process of Bose-Einstein (BE) condensation of a dilute cold gas is considered. If the particle flux into the low-energy modes, induced, e.g., by a cooling quench, is sufficiently strong, the Bose gas develops a characteristic power-law single-particle spectrum n(k)∼k−5n(k)\sim k^{-5}, and critical slowing down in time occurs. The fixed point is shown to be marked by the creation and dilution of tangled vortex lines. Alternatively, for a weak cooling quench and particle flux, the condensation process runs quasi adiabatically, passing by the fixed point in far distance, and signatures of critical scaling remain absent.Comment: 5+2 pages, 8 figure

    Formation of a condensed state with macroscopic number of phonons in ultracold Bose gases

    Full text link
    A mechanism for the formation of a new type of stationary state with macroscopical number of phonons in condensed atomic gases is proposed. This mechanism is based on generating longitudinal phonons as a result of parametric resonance caused by a permanent modulation of the transverse trap frequency in an elongated trap. The phonon-phonon interaction predetermines the self-consistent evolution which is completed with macroscopic population of one from all levels within the energy interval of parametric amplification. This level proves to be shifted to the edge of this interval. All other levels end the evolution with zero population.Comment: 9 pages, 8 figure

    Manifestation of superfluidity in an evolving Bose-condensed gas

    Full text link
    We study the generation of excitations due to an ''impurity''(static perturbation) placed into an oscillating Bose-condensed gas in the time-dependent trapping field. It is shown that there are two regions for the position of the local perturbation. In the first region the condensate flows around the ''impurity'' without generation of excitations demonstrating superfluid properties. In the second region the creation of excitations occurs, at least within a limited time interval, revealing destruction of superfluidity. The phenomenon can be studied by measuring the damping of condensate oscillations at different positions of the ''impurity''

    Collapse and Bose-Einstein condensation in a trapped Bose-gas with negative scattering length

    Full text link
    We find that the key features of the evolution and collapse of a trapped Bose condensate with negative scattering length are predetermined by the particle flux from the above-condensate cloud to the condensate and by 3-body recombination of Bose-condensed atoms. The collapse, starting once the number of Bose-condensed atoms reaches the critical value, ceases and turns to expansion when the density of the collapsing cloud becomes so high that the recombination losses dominate over attractive interparticle interaction. As a result, we obtain a sequence of collapses, each of them followed by dynamic oscillations of the condensate. In every collapse the 3-body recombination burns only a part of the condensate, and the number of Bose-condensed atoms always remains finite. However, it can comparatively slowly decrease after the collapse, due to the transfer of the condensate particles to the above-condensate cloud in the course of damping of the condensate oscillations.Comment: 11 pages, 3 figure

    Accidental suppression of Landau damping of the transverse breathing mode in elongated Bose-Einstein condensates

    Full text link
    We study transverse radial oscillations of an elongated Bose-Einstein condensate using finite temperature simulations, in the context of a recent experiment at ENS. We demonstrate the existence of a mode corresponding to an in-phase collective oscillation of both the condensate and thermal cloud. Excitation of this mode accounts for the very small damping rate observed experimentally, and we find excellent quantitative agreement between experiment and theory. In contrast to other condensate modes, interatomic collisions are found to be the dominant damping mechanism in this case.Comment: 4 pages, 3 figure

    Critical Dynamics of a Two-dimensional Superfluid near a Non-Thermal Fixed Point

    Full text link
    Critical dynamics of an ultracold Bose gas far from equilibrium is studied in two spatial dimensions. Superfluid turbulence is created by quenching the equilibrium state close to zero temperature. Instead of immediately re-thermalizing, the system approaches a meta-stable transient state, characterized as a non-thermal fixed point. A focus is set on the vortex density and vortex-antivortex correlations which characterize the evolution towards the non-thermal fixed point and the departure to final (quasi-)condensation. Two distinct power-law regimes in the vortex-density decay are found and discussed in terms of a vortex binding-unbinding transition and a kinetic description of vortex scattering. A possible relation to decaying turbulence in classical fluids is pointed out. By comparing the results to equilibrium studies of a two-dimensional Bose gas, an intuitive understanding of the location of the non-thermal fixed point in a reduced phase space is developed.Comment: 11 pages, 13 figures; PRA versio

    Measurement of positive and negative scattering lengths in a Fermi gas of atoms

    Full text link
    An exotic superfluid phase has been predicted for an ultracold gas of fermionic atoms. This phase requires strong attractive interactions in the gas, or correspondingly atoms with a large, negative s-wave scattering length. Here we report on progress toward realizing this predicted superfluid phase. We present measurements of both large positive and large negative scattering lengths in a quantum degenerate Fermi gas of atoms. Starting with a two-component gas that has been evaporatively cooled to quantum degeneracy, we create controllable, strong interactions between the atoms using a magnetic-field Feshbach resonance. We then employ a novel rf spectroscopy technique to directly measure the mean-field interaction energy, which is proportional to the s-wave scattering length. Near the peak of the resonance we observe a saturation of the interaction energy; it is in this strongly interacting regime that superfluidity is predicted to occur. We have also observed anisotropic expansion of the gas, which has recently been suggested as a signature of superfluidity. However, we find that this can be attributed to a purely collisional effect

    Zero-Temperature Structures of Atomic Metallic Hydrogen

    Full text link
    Ab initio random structure searching with density functional theory was used to determine the zero-temperature structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including zero point motion in the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (r_s = 1.225), which then remains stable to 2.5 TPa (r_s = 0.969). At higher pressures, hydrogen stabilizes in an ...ABCABC... planar structure that is remarkably similar to the ground state of lithium, which compresses to the face-centered cubic lattice beyond 5 TPa (r_s < 0.86). At this level of theory, our results provide a complete ab initio description of the atomic metallic structures of hydrogen, resolving one of the most fundamental and long outstanding issues concerning the structures of the elements.Comment: 9 pages; 4 figure
    • …
    corecore