82 research outputs found

    Lamb Shift in Muonic Hydrogen

    Full text link
    The Lamb shift in muonic hydrogen continues to be a subject of experimental and theoretical investigation. Here my older work on the subject is updated to provide a complementary calculation of the energies of the 2p-2s transitions in muonic hydrogen.Comment: 15 pages, no figures. 2 small misprints corrected. Published in Phys. Rev.

    A geometrical angle on Feynman integrals

    Get PDF
    A direct link between a one-loop N-point Feynman diagram and a geometrical representation based on the N-dimensional simplex is established by relating the Feynman parametric representations to the integrals over contents of (N-1)-dimensional simplices in non-Euclidean geometry of constant curvature. In particular, the four-point function in four dimensions is proportional to the volume of a three-dimensional spherical (or hyperbolic) tetrahedron which can be calculated by splitting into birectangular ones. It is also shown that the known formula of reduction of the N-point function in (N-1) dimensions corresponds to splitting the related N-dimensional simplex into N rectangular ones.Comment: 47 pages, including 42 pages of the text (in plain Latex) and 5 pages with the figures (in a separate Latex file, requires axodraw.sty) a note and three references added, minor problem with notation fixe

    Renormalizable 1/N_f Expansion for Field Theories in Extra Dimensions

    Full text link
    We demonstrate how one can construct renormalizable perturbative expansion in formally nonrenormalizable higher dimensional field theories. It is based on 1/Nf1/N_f-expansion and results in a logarithmically divergent perturbation theory in arbitrary high space-time dimension. First, we consider a simple example of NN-component scalar filed theory and then extend this approach to Abelian and non-Abelian gauge theories with NfN_f fermions. In the latter case, due to self-interaction of non-Abelian fields the proposed recipe requires some modification which, however, does not change the main results. The resulting effective coupling is dimensionless and is running in accordance with the usual RG equations. The corresponding beta function is calculated in the leading order and is nonpolynomial in effective coupling. It exhibits either UV asymptotically free or IR free behaviour depending on the dimension of space-time. The original dimensionful coupling plays a role of a mass and is also logarithmically renormalized. We analyze also the analytical properties of a resulting theory and demonstrate that in general it acquires several ghost states with negative and/or complex masses. In the former case, the ghost state can be removed by a proper choice of the coupling. As for the states with complex conjugated masses, their contribution to physical amplitudes cancels so that the theory appears to be unitary.Comment: 32 pages, 20 figure

    Causal perturbation theory in terms of retarded products, and a proof of the Action Ward Identity

    Full text link
    In the framework of perturbative algebraic quantum field theory a local construction of interacting fields in terms of retarded products is performed, based on earlier work of Steinmann. In our formalism the entries of the retarded products are local functionals of the off shell classical fields, and we prove that the interacting fields depend only on the action and not on terms in the Lagrangian which are total derivatives, thus providing a proof of Stora's 'Action Ward Identity'. The theory depends on free parameters which flow under the renormalization group. This flow can be derived in our local framework independently of the infrared behavior, as was first established by Hollands and Wald. We explicitly compute non-trivial examples for the renormalization of the interaction and the field.Comment: 76 pages, to appear in Rev. Math. Phy

    Explicitly symmetrical treatment of three-body phase space

    Full text link
    We derive expressions for three-body phase space that are explicitly symmetrical in the masses of the three particles. We study geometrical properties of the variables involved in elliptic integrals and demonstrate that it is convenient to use the Jacobian zeta function to express the results in four and six dimensions.Comment: 20 pages, latex, 2 postscript figure

    The Single Photon Annihilation Contributions to the Positronium Hyperfine Splitting to Order meα6m_e\alpha^6

    Get PDF
    The single photon annihilation contributions for the positronium ground state hyperfine splitting are calculated analytically to order meα6m_e\alpha^6 using NRQED. Based on intuitive physical arguments the same result can also be determined by a trivial calculation using results from existing literature. Our result completes the hyperfine splitting calculation to order meα6m_e\alpha^6. We compare the theoretical prediction with the most recent experimental measurement.Comment: 8 pages, latex, two eps figures include

    Protecting the conformal symmetry via bulk renormalization on Anti deSitter space

    Get PDF
    The problem of perturbative breakdown of conformal symmetry can be avoided, if a conformally covariant quantum field phi on d-dimensional Minkowski spacetime is viewed as the boundary limit of a quantum field Phi on d+1-dimensional anti-deSitter spacetime (AdS). We study the boundary limit in renormalized perturbation theory with polynomial interactions in AdS, and point out the differences as compared to renormalization directly on the boundary. In particular, provided the limit exists, there is no conformal anomaly. We compute explicitly the "fish diagram" on AdS_4 by differential renormalization, and calculate the anomalous dimension of the composite boundary field phi^2 with bulk interaction Phi^4.Comment: 40 page

    Feynman Diagrams and Differential Equations

    Full text link
    We review in a pedagogical way the method of differential equations for the evaluation of D-dimensionally regulated Feynman integrals. After dealing with the general features of the technique, we discuss its application in the context of one- and two-loop corrections to the photon propagator in QED, by computing the Vacuum Polarization tensor exactly in D. Finally, we treat two cases of less trivial differential equations, respectively associated to a two-loop three-point, and a four-loop two-point integral. These two examples are the playgrounds for showing more technical aspects about: Laurent expansion of the differential equations in D (around D=4); the choice of the boundary conditions; and the link among differential and difference equations for Feynman integrals.Comment: invited review article from Int. J. Mod. Phys.

    Hadronic Contributions to the Muon Anomaly in the Constituent Chiral Quark Model

    Get PDF
    The hadronic contributions to the anomalous magnetic moment of the muon which are relevant for the confrontation between theory and experiment at the present level of accuracy, are evaluated within the same framework: the constituent chiral quark model. This includes the contributions from the dominant hadronic vacuum polarization as well as from the next--to--leading order hadronic vacuum polarization, the contributions from the hadronic light-by-light scattering, and the contributions from the electroweak hadronic ZγγZ\gamma\gamma vertex. They are all evaluated as a function of only one free parameter: the constituent quark mass. We also comment on the comparison between our results and other phenomenological evaluations.Comment: Several misprints corrected and a clarifying sentence added. Three figures superposed and two references added. Version to appear in JHE

    Lamb Shift in Light Muonic Atoms - Revisited

    Full text link
    In connection with recent and proposed experiments, and new theoretical results, my previous calculations of the Lamb shift in muonic hydrogen will be reviewed and compared with other work. In addition, numerical results for muonic deuterium and helium will be presented. Some previously neglected (but very small) effects are included.Comment: 41 pages. This paper has appeared in Annals of Physics, vol. 327, pp 733-763 (2012). The present version has corrected several misprints, and updated some references to take into account new result
    corecore