2,271 research outputs found
Dynamic autonomous intelligent control of an asteroid lander
One of the future flagship missions of the European Space Agency (ESA) is the asteroid sample return mission Marco-Polo. Although there have been a number of past missions to asteroids, a sample has never been successfully returned. The return of asteroid regolith to the Earth's surface introduces new technical challenges. This paper develops attitude control algorithms for the descent phase onto an asteroid in micro-gravity conditions and draws a comparison between the algorithms considered. Two studies are also performed regarding the Fault Detection Isolation and Recovery (FDIR) of the control laws considered. The potential of using Direct Adaptive Control (DAC) as a controller for the surface sampling process is also investigated. Use of a DAC controller incorporates increased levels of robustness by allowing realtime variation of control gains. This leads to better response to uncertainties encountered during missions
Spin-enhanced magnetocaloric effect in molecular nanomagnets
An unusually large magnetocaloric effect for the temperature region below 10 K is found for the Fe-14 molecular nanomagnet. This is to large extent caused by its extremely large spin S ground state combined with an excess of entropy arising from the presence of low-lying excited S states. We also show that the highly symmetric Fe-14 cluster core, resulting in small cluster magnetic anisotropy, enables the occurrence of long-range antiferromagnetic order below T-N=1.87 K
Inaccessible Singularities in Toral Cosmology
The familiar Bang/Crunch singularities of classical cosmology have recently
been augmented by new varieties: rips, sudden singularities, and so on. These
tend to be associated with final states. Here we consider an alternative
possibility for the initial state: a singularity which has the novel property
of being inaccessible to physically well-defined probes. These singularities
arise naturally in cosmologies with toral spatial sections.Comment: 10 pages, version to appear in Classical and Quantum Gravit
Low temperature magnetization and the excitation spectrum of antiferromagnetic Heisenberg spin rings
Accurate results are obtained for the low temperature magnetization versus
magnetic field of Heisenberg spin rings consisting of an even number N of
intrinsic spins s = 1/2, 1, 3/2, 2, 5/2, 3, 7/2 with nearest-neighbor
antiferromagnetic (AF) exchange by employing a numerically exact quantum Monte
Carlo method. A straightforward analysis of this data, in particular the values
of the level-crossing fields, provides accurate results for the lowest energy
eigenvalue E(N,S,s) for each value of the total spin quantum number S. In
particular, the results are substantially more accurate than those provided by
the rotational band approximation. For s <= 5/2, data are presented for all
even N <= 20, which are particularly relevant for experiments on finite
magnetic rings. Furthermore, we find that for s > 1 the dependence of E(N,S,s)
on s can be described by a scaling relation, and this relation is shown to hold
well for ring sizes up to N = 80 for all intrinsic spins in the range 3/2 <= s
<= 7/2. Considering ring sizes in the interval 8 <= N <= 50, we find that the
energy gap between the ground state and the first excited state approaches zero
proportional to 1/N^a, where a = 0.76 for s = 3/2 and a = 0.84 for s = 5/2.
Finally, we demonstrate the usefulness of our present results for E(N,S,s) by
examining the Fe12 ring-type magnetic molecule, leading to a new, more accurate
estimate of the exchange constant for this system than has been obtained
heretofore.Comment: Submitted to Physical Review B, 10 pages, 10 figure
Space-based geoengineering: challenges and requirements
The prospect of engineering the Earth's climate (geoengineering) raises a multitude of issues associated with climatology, engineering on macroscopic scales, and indeed the ethics of such ventures. Depending on personal views, such large-scale engineering is either an obvious necessity for the deep future, or yet another example of human conceit. In this article a simple climate model will be used to estimate requirements for engineering the Earth's climate, principally using space-based geoengineering. Active cooling of the climate to mitigate anthropogenic climate change due to a doubling of the carbon dioxide concentration in the Earth's atmosphere is considered. This representative scenario will allow the scale of the engineering challenge to be determined. It will be argued that simple occulting discs at the interior Lagrange point may represent a less complex solution than concepts for highly engineered refracting discs proposed recently. While engineering on macroscopic scales can appear formidable, emerging capabilities may allow such ventures to be seriously considered in the long term. This article is not an exhaustive review of geoengineering, but aims to provide a foretaste of the future opportunities, challenges, and requirements for space-based geoengineering ventures
Issues of alcohol misuse among older people : attitudes and experiences of social work practitioners
This small-scale qualitative research focused on the experiences of social workers vis--vis older people who misuse alcohol. Based in an Older People's Team in the west of Scotland, the study explored service provision for alcohol misuse and examined whether practitioners felt the existing services provided by the Substance Misuse Team were effective in meeting the needs of older people with an alcohol problem. Using semi-structured interviews, data were collected from 18 participants, the majority (14) of whom were female and whose ages ranged from 31 to 54 years. Several key themes emerged including the extent of alcohol problems among older people and the complex reasons that cause older people to misuse alcohol. These reasons commonly related to the increasing challenges of old age. The data also demonstrated that current services are not meeting the needs of older people. Practitioners identified a need for an 'age-specific' approach to target more effectively the complex needs of older people. Recommendations from practitioners included ways to develop new and more effective services, including a more age-specific service, such as providing longer term support in older people's own homes, using a specialised support worker, and increasing staff training on alcohol use among older people
Realistic Earth escape strategies for solar sailing
With growing interest in solar sailing comes the requirement to provide a basis for future detailed planetary escape mission analysis by drawing together prior work, clarifying and explaining previously anomalies. Previously unexplained seasonal variations in sail escape times from Earth orbit are explained analytically and corroborated within a numerical trajectory model. Blended-sail control algorithms, explicitly independent of time, which providenear-optimal escape trajectories and maintain a safe minimum altitude and which are suitable as a potential autonomous onboard controller, are then presented. These algorithms are investigated from a range of initial conditions and are shown to maintain the optimality previously demonstrated by the use of a single-energy gain control law but without the risk of planetary collision. Finally, it is shown that the minimum sail characteristic acceleration required for escape from a polar orbit without traversing the Earth shadow cone increases exponentially as initial altitude is decreased
Designing displaced lunar orbits using low-thrust propulsion
The design of spacecraft trajectories is a crucial task in space mission design. Solar sail technology appears as a promising form of advanced spacecraft propulsion which can enable exciting new space science mission concepts such as solar system exploration and deep space observation. Although solar sailing has been considered as a practical means of spacecraft propulsion only relatively recently, the fundamental ideas are by no means new (see McInnes1 for a detailed description). A solar sail is propelled by re ecting solar photons and therefore can transform the momentum of the photons into a propulsive force. This article focuses on designing displaced lunar orbits using low-thrust propulsion
Survey of highly non-Keplerian orbits with low-thrust propulsion
Celestial mechanics has traditionally been concerned with orbital motion under the action of a conservative gravitational potential. In particular, the inverse square gravitational force due to the potential of a uniform, spherical mass leads to a family of conic section orbits, as determined by Isaac Newton, who showed that Keplerâs laws were derivable from his theory of gravitation. While orbital motion under the action of a conservative gravitational potential leads to an array of problems with often complex and interesting solutions, the addition of non-conservative forces offers new avenues of investigation. In particular, non-conservative forces lead to a rich diversity of problems associated with the existence, stability and control of families of highly non-Keplerian orbits generated by a gravitational potential and a non-conservative force. Highly non-Keplerian orbits can potentially have a broad range of practical applications across a number of different disciplines. This review aims to summarize the combined wealth of literature concerned with the dynamics, stability and control of highly non-Keplerian orbits for various low thrust propulsion devices, and to demonstrate some of these potential applications
Analytical sun synchronous low-thrust manoeuvres
Article describes analytical sun synchronous low-thrust manoeuvres
- âŠ