6,295 research outputs found
Deformation-induced accelerated dynamics in polymer glasses
Molecular dynamics simulations are used to investigate the effects of
deformation on the segmental dynamics in an aging polymer glass. Individual
particle trajectories are decomposed into a series of discontinuous hops, from
which we obtain the full distribution of relaxation times and displacements
under three deformation protocols: step stress (creep), step strain, and
constant strain rate deformation. As in experiments, the dynamics can be
accelerated by several orders of magnitude during deformation, and the history
dependence is entirely erased during yield (mechanical rejuvenation). Aging can
be explained as a result of the long tails in the relaxation time distribution
of the glass, and similarly, mechanical rejuvenation is understood through the
observed narrowing of this distribution during yield. Although the relaxation
time distributions under deformation are highly protocol specific, in each case
they may be described by a universal acceleration factor that depends only on
the strain.Comment: 15 pages, 15 figure
Statistics of the Energy Dissipation Rate and Local Enstrophy in Turbulent Channel Flow
Using high-resolution direct numerical simulations, the height and Reynolds
number dependence of higher-order statistics of the energy dissipation rate and
local enstrophy are examined in incompressible, fully-developed turbulent
channel flow. The statistics are studied over a range of wall distances,
spanning the viscous sublayer to the channel flow centerline, for friction
Reynolds numbers and . The high resolution of
the simulations allows dissipation and enstrophy moments up to fourth order to
be calculated. These moments show a dependence on wall distance, and Reynolds
number effects are observed at the edge of the logarithmic layer. Conditional
analyses based on locations of intense rotation are also carried out in order
to determine the contribution of vortical structures to the dissipation and
enstrophy moments. Our analysis shows that, for the simulation at the larger
Reynolds number, small-scale fluctuations of both dissipation and enstrophy
become relatively constant for .Comment: Accepted by Physica
Optical transparency of graphene as determined by the fine-structure constant
The observed 97.7% optical transparency of graphene has been linked to the
value 1/137 of the fine structure constant, by using results for noninteracting
Dirac fermions. The agreement in three significant figures requires an
explanation for the apparent unimportance of the Coulomb interaction. Using
arguments based on Ward identities, the leading corrections to the optical
conductivity due to the Coulomb interactions are correctly computed (resolving
a subtle theoretical issue) and shown to amount to only 1-2%, corresponding to
0.03-0.04% in the transparency.Comment: 5 pages, 2 figures, Minor changes, published version with a new titl
Fingerprints for spin-selection rules in the interaction dynamics of O2 at Al(111)
We performed mixed quantum-classical molecular dynamics simulations based on
first-principles potential-energy surfaces to demonstrate that the scattering
of a beam of singlet O2 molecules at Al(111) will enable an unambiguous
assessment of the role of spin-selection rules for the adsorption dynamics. At
thermal energies we predict a sticking probability that is substantially less
than unity, with the repelled molecules exhibiting characteristic kinetic,
vibrational and rotational signatures arising from the non-adiabatic spin
transition.Comment: 4 pages including 3 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Critical behavior of the three-dimensional bond-diluted Ising spin glass: Finite-size scaling functions and Universality
We study the three-dimensional (3D) bond-diluted Edwards-Anderson (EA) model
with binary interactions at a bond occupation of 45% by Monte Carlo (MC)
simulations. Using an efficient cluster MC algorithm we are able to determine
the universal finite-size scaling (FSS) functions and the critical exponents
with high statistical accuracy. We observe small corrections to scaling for the
measured observables. The critical quantities and the FSS functions indicate
clearly that the bond-diluted model for dilutions above the critical dilution
p*, at which a spin glass (SG) phase appears, lies in the same universality
class as the 3D undiluted EA model with binary interactions. A comparison with
the FSS functions of the 3D site-diluted EA model with Gaussian interactions at
a site occupation of 62.5% gives very strong evidence for the universality of
the SG transition in the 3D EA model.Comment: Revised version. 10 pages, 9 figures, 2 table
Degenerate Bose gases with uniform loss
We theoretically investigate a weakly-interacting degenerate Bose gas coupled
to an empty Markovian bath. We show that in the universal phononic limit the
system evolves towards an asymptotic state where an emergent temperature is set
by the quantum noise of the outcoupling process. For situations typically
encountered in experiments, this mechanism leads to significant cooling. Such
dissipative cooling supplements conventional evaporative cooling and dominates
in settings where thermalization is highly suppressed, such as in a
one-dimensional quasicondensate.Comment: 9 pages, 5 figures, open access publicatio
Simulations of aging and plastic deformation in polymer glasses
We study the effect of physical aging on the mechanical properties of a model
polymer glass using molecular dynamics simulations. The creep compliance is
determined simultaneously with the structural relaxation under a constant
uniaxial load below yield at constant temperature. The model successfully
captures universal features found experimentally in polymer glasses, including
signatures of mechanical rejuvenation. We analyze microscopic relaxation
timescales and show that they exhibit the same aging characteristics as the
macroscopic creep compliance. In addition, our model indicates that the entire
distribution of relaxation times scales identically with age. Despite large
changes in mobility, we observe comparatively little structural change except
for a weak logarithmic increase in the degree of short-range order that may be
correlated to an observed decrease in aging with increasing load.Comment: 9 pages, 12 figure
Universal collisionless transport of graphene
The impact of the electron-electron Coulomb interaction on the optical
conductivity of graphene has led to a controversy that calls into question the
universality of collisionless transport in this and other Dirac materials.
Using a lattice calculation that avoids divergences present in previous nodal
Dirac approaches, our work settles this controversy and obtains results in
quantitative agreement with experiment over a wide frequency range. We also
demonstrate that dimensional regularization methods agree, as long as the
scaling properties of the conductivity and the regularization of the theory in
modified dimension are correctly implemented. Tight-binding lattice and nodal
Dirac theory calculations are shown to coincide at low energies even when the
non-zero size of the atomic orbital wave function is included, conclusively
demonstrating the universality of the optical conductivity of graphene.Comment: 4+ pages,4 figures; includes Supplemental Material (18 pages, 2
figures
Energy gaps in quantum first-order mean-field-like transitions: The problems that quantum annealing cannot solve
We study first-order quantum phase transitions in models where the mean-field
traitment is exact, and the exponentially fast closure of the energy gap with
the system size at the transition. We consider exactly solvable ferromagnetic
models, and show that they reduce to the Grover problem in a particular limit.
We compute the coefficient in the exponential closure of the gap using an
instantonic approach, and discuss the (dire) consequences for quantum
annealing.Comment: 6 pages, 3 figure
- …