32 research outputs found

    Drug delivery systems for potential treatment of intracellular bacterial infections.

    Get PDF
    Despite the advent of a considerable number of new antibiotics, treatment of intracellular pathogens still represents a major pharmaceutical challenge. The antibiotic concentration in those specialized niches are often subtherapeutic, for which high doses of antibiotics must often be used. This is not only costly but may also increase localized or systemic side effects. There is therefore an urgent need for materials and methods to enable clinicians to achieve therapeutically effective intracellular concentration of those antibiotics which show good efficiency in vitro. In this setting, the possible use of drug delivery systems (DDS) loaded with antibiotics that exhibit a high in vitro bactericidal activity deserves to be considered. Entrapping or encapsulating the drug within a delivery system provides a greater control of the pharmacokinetic behavior of the active molecule. This more efficient use of antibiotics may diminish their drawbacks and provide the basis for shortening the current time required by classical treatments. This review will focus on the role of DDS as a potential tool against intracellular bacteria

    A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load

    Get PDF
    A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomography

    Novel bioactive hydrophobic gentamicin carriers for the treatment of intracellular bacterial infections.

    Get PDF
    Gentamicin (GEN) is an aminoglycoside antibiotic with a potent antibacterial activity against a wide variety of bacteria. However, its poor cellular penetration limits its use in the treatment of infections caused by intracellular pathogens. One potential strategy to overcome this problem is the use of particulate carriers that can target the intracellular sites of infection. In this study GEN was ion paired with the anionic AOT surfactant to obtain a hydrophobic complex (GEN-AOT) that was formulated as a particulated material either by the Precipitation with a Compressed Antisolvent (PCA) method, or by encapsulation into poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). The micronization of GEN-AOT by PCA yielded a particulated material with a higher surface area than the non-precipitated complex, while PLGA NPs within a size range of 250-330 nm and a sustained release of the drug over 70 days were obtained by preparing the NPs using the emulsion solvent evaporation method. For the first time, GEN encapsulation efficiency values around 100% were achieved for the different NP formulations with no signs of interaction between the drug and the polymer. Finally, in vitro studies against the intracellular bacteria Brucella melitensis, used as a model of intracellular pathogen, demonstrated that the bactericidal activity of GEN was unmodified after ion-pairing, precipitation or encapsulation into NPs. These results, encourage their use for treatment for infections caused by GEN sensitive intracellular bacteria

    A simple and robust high-performance liquid chromatography coupled to a diode-array detector method for the analysis of genistein in mouse tissues

    Get PDF
    A simple liquid-liquid extraction procedure and quantification by high-performance liquid chromatography (HPLC) method coupled to a diode-array detector (DAD) of genistein (GEN) was developed in various mouse biological matrices. 7-ethoxycoumarin was used as internal standard (IS) and peaks were optimally separated using a Kinetex C18 column (2.6 µm, 150 mm X 2.10 mm I.D.) at 40 ºC with an isocratic elution of mobile phase with sodium dihydrogen phosphate 0.01M in water at pH 2.5 and methanol (55:45, v/v), at a flow rate of 0.25 mL/min. The injection volume was 10 µL. In all cases, the range of GEN recovery was higher than 61%. The low limit of quantification (LLOQ) was 25 ng/mL. The linearity of the calibration curves was satisfactory in all cases as shown by correlation coefficients >0.996. The within-day and between-day precisions were <15% and the accuracy ranged in all cases between 90.14 and 106.05%. This method was successfully applied to quantify GEN in liver, spleen, kidney and plasma after intravenous administration of a single dose (30 mg/Kg) in female BALB/C mice

    Cellular pharmacokinetics and intracellular activity against Listeria monocytogenes and Staphylococcus aureus of chemically modified and nanoencapsulated gentamicin

    Get PDF
    OBJECTIVES: The aim of this study was to investigate different hydrophobic gentamicin formulations [gentamicin-bis(2-ethylhexyl) sulfosuccinate (GEN-AOT), microstructured GEN-AOT (PCA GEN-AOT) and GEN-AOT-loaded poly(lactide-co-glycolide) acid (PLGA) nanoparticles (NPs)] in view of improving its therapeutic index against intracellular bacteria. The intracellular accumulation, subcellular distribution and intracellular activity of GEN-AOT and NPs in different monocytic-macrophagic cell lines were studied. METHODS: Human THP-1 and murine J774 phagocytic cells were incubated with GEN-AOT formulations at relevant extracellular concentrations [from 1× MIC to 18 mg/L (human C(max))], and their intracellular accumulation, subcellular distribution and toxicity were evaluated and compared with those of conventional unmodified gentamicin. Intracellular activity of the formulations was determined against bacteria showing different subcellular localizations, namely Staphylococcus aureus (phagolysosomes) and Listeria monocytogenes (cytosol). RESULTS: GEN-AOT formulations accumulated 2-fold (GEN-AOT) to 8-fold (GEN-AOT NPs) more than gentamicin in phagocytic cells, with a predominant subcellular localization in the soluble fraction (cytosol) and with no significant cellular toxicity. NP formulations allowed gentamicin to exert its intracellular activity after shorter incubation times and/or at lower concentrations. With an extracellular concentration of 10× MIC, a 1 log(10) decrease in S. aureus intracellular inoculum was obtained after 12 h instead of 24 h for NPs versus free gentamicin, and a static effect was observed against L. monocytogenes at 24 h with NPs, while free gentamicin was ineffective. CONCLUSIONS: GEN-AOT formulations yielded a high cellular accumulation, especially in the cytosol, which resulted in improved efficacy against both intracellular S. aureus and L. monocytogenes

    Ultra high performance liquid chromatography–tandem mass spectrometry method for cyclosporine a quantification in biological samples and lipid nanosystems

    Get PDF
    Cyclosporine A (CyA) is an immunosuppressant cyclic undecapeptide used for the prevention of organ transplant rejection and in the treatment of several autoimmune disorders. An ultra high performance liquid chromatography–tandem mass spectrometry method (UHPLC–MS/MS) to quantify CyA in lipid nanosystems and mouse biological matrices (whole blood, kidneys, lungs, spleen, liver, heart, brain, stomach and intestine) was developed and fully validated. Chromatographic separation was performed on an Acquity UPLC® BEH C18 column with a gradient elution consisting of methanol and 2 mM ammonium acetate aqueous solution containing 0.1% formic acid at a flow rate of 0.6 mL/min. Amiodarone was used as internal standard (IS). Retention times of IS and CyA were 0.69 min and 1.09 min, respectively. Mass spectrometer operated in electrospray ionization positive mode (ESI+) and multiple reaction monitoring (MRM) transitions were detected, m/z 1220.69 → 1203.7 for CyA and m/z 646 → 58 for IS. The extraction method from biological samples consisted of a simple protein precipitation with 10% trichloroacetic acid aqueous solution and acetonitrile and 5 μL of supernatant were directly injected into the UHPLC–MS/MS system. Linearity was observed between 0.001 μg/mL–2.5 μg/mL (r ≥ 0.99) in all matrices. The precision expressed in coefficient of variation (CV) was below 11.44% and accuracy in bias ranged from −12.78% to 7.99% including methanol and biological matrices. Recovery in all cases was above 70.54% and some matrix effect was observed. CyA was found to be stable in post-extraction whole blood and liver homogenate samples exposed for 6 h at room temperature and 72 h at 4 °C. The present method was successfully applied for quality control of lipid nanocarriers as well as in vivo studies in BALB/c mice

    Nanosistemas a base de poliésteres

    Get PDF
    Amplia presentacion de los: Nanosistemas a base de poliésteres, desarrollando todas las posibilidades de estos compuestos que constituyen tal vez los polímeros mas frecuentemente utilizados por estar, algunos de ellos, autorizado su empleo por las agen- cias regulatorias

    Cytotoxicity of nanoscaled metal–organic frameworks

    Get PDF
    A series of fourteen porous Metal–Organic Frameworks (MOFs) with different compositions (Fe, Zn, and Zr; carboxylates or imidazolates) and structures have been successfully synthesised at the nanoscale and fully characterised by XRPD, FTIR, TGA, N2 porosimetry, TEM, DLS and z-potential. Their toxicological assessment was performed using two different cell lines: human epithelial cells from foetal cervical carcinoma (HeLa) and murine macrophage cell line (J774). It appears that MOF nanoparticles (NPs) exhibit low cytotoxicity, comparable to those of other commercialised nanoparticulate systems, the less toxic being the Fe carboxylate and the more toxic being the zinc imidazolate NPs. The cytotoxicity values, higher in J774 cells than in HeLa cells, are mainly function of their composition and cell internalisation capacity. Finally, cell uptake of one of the most relevant Fe-MOF-NPs for drug vectorisation has been investigated by confocal microscopy studies, and indicates a faster kinetics of cell penetration within J774 compared to HeLa cells

    A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load

    Get PDF
    A new strategy to nanoengineer multi-functional polymer–metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and noncovalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(DL-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomograph

    Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration

    Get PDF
    Acidic fibroblast growth factor (FGF1) and neuregulin-1 (NRG1) are growth factors involved in cardiac development and regeneration. Microparticles (MPs) mediate cytokine sustained release, and can be utilized to overcome issues related to the limited therapeutic protein stability during systemic administration. We sought to examine whether the administration of microparticles (MPs) containing FGF1 and NRG1 could promote cardiac regeneration in a myocardial infarction (MI) rat model. We investigated the possible underlying mechanisms contributing to the beneficial effects of this therapy, especially those linked to endogenous regeneration. FGF1- and NRG1-loaded MPs were prepared using a multiple emulsion solvent evaporation technique. Seventy-three female Sprague-Dawley rats underwent permanent left anterior descending coronary artery occlusion, and MPs were intramyocardially injected in the peri-infarcted zone four days later. Cardiac function, heart tissue remodeling, revascularization, apoptosis, cardiomyocyte proliferation, and stem cell homing were evaluated one week and three months after treatment. MPs were shown to efficiently encapsulate FGF1 and NRG1, releasing the bioactive proteins in a sustained manner. Three months after treatment, a statistically significant improvement in cardiac function was detected in rats treated with growth factor-loaded MPs (FGF1, NRG1, or FGF1/NRG1). The therapy led to inhibition of cardiac remodeling with smaller infarct size, a lower fibrosis degree and induction of tissue revascularization. Cardiomyocyte proliferation and progenitor cell recruitment was detected. Our data support the therapeutic benefit of NRG1 and FGF1 when combined with protein delivery systems for cardiac regeneration. This approach could be scaled up for use in pre-clinical and clinical studies
    corecore