247 research outputs found
The noncavitating performance and life of a small vane-type positive displacement pump in liquid hydrogen
The low flow rate and high head rise requirements of hydrogen/oxygen auxiliary propulsion systems make the application of centrifugal pumps difficult. Positive displacement pumps are well-suited for these flow conditions, but little is known about their performance and life characteristics in liquid hydrogen. An experimental and analytical investigation was conducted to determine the performance and life characteristics of a vane-type, positive displacement pump. In the experimental part of this effort, mass flow rate and shaft torque were determined as functions of shaft speed and pump pressure rise. Since liquid hydrogen offers little lubrication in a rubbing situation, pump life is an issue. During the life test, the pump was operated intermittently for 10 hr at the steady-state point of 0.074 lbm/sec (0.03 kg/sec) flow rate, 3000 psid (2.07 MPa) pressure rise, and 8000 rpm (838 rad/sec) shaft speed. Pump performance was monitored during the life test series and the results indicated no loss in performance. Material loss from the vanes was recorded and wear of the other components was documented. In the analytical part of this effort, a comprehensive pump performance analysis computer code, developed in-house, was used to predict pump performance. The results of the experimental investigation are presented and compared with the results of the analysis. Results of the life test are also presented
Conflict-free connection numbers of line graphs
A path in an edge-colored graph is called \emph{conflict-free} if it contains
at least one color used on exactly one of its edges. An edge-colored graph
is \emph{conflict-free connected} if for any two distinct vertices of ,
there is a conflict-free path connecting them. For a connected graph , the
\emph{conflict-free connection number} of , denoted by , is defined
as the minimum number of colors that are required to make conflict-free
connected. In this paper, we investigate the conflict-free connection numbers
of connected claw-free graphs, especially line graphs. We first show that for
an arbitrary connected graph , there exists a positive integer such that
. Secondly, we get the exact value of the conflict-free
connection number of a connected claw-free graph, especially a connected line
graph. Thirdly, we prove that for an arbitrary connected graph and an
arbitrary positive integer , we always have , with only the exception that is isomorphic to a star of order
at least~ and . Finally, we obtain the exact values of ,
and use them as an efficient tool to get the smallest nonnegative integer
such that .Comment: 11 page
Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces
The formation energies of nanostructures play an important role in
determining their properties, including the catalytic activity. For the case of
15 different rutile and 8 different perovskite metal oxides, we find that the
density functional theory (DFT) calculated formation energies of (2,2)
nanorods, (3,3) nanotubes, and the (110) and (100) surfaces may be described
semi-quantitatively by the fraction of metal--oxygen bonds broken and the
bonding band centers in the bulk metal oxide
Assessment of Real-Time 3D Visualization for Cardiothoracic Diagnostic Evaluation and Surgery Planning
RATIONALE AND OBJECTIVES: Three-dimensional (3D) real-time volume rendering has demonstrated improvements in clinical care for several areas of radiological imaging. We test whether advanced real-time rendering techniques combined with an effective user interface will allow radiologists and surgeons to improve their performance for cardiothoracic surgery planning and diagnostic evaluation.
MATERIAL AND METHODS: An interactive combination 3D and 2D visualization system developed at the University of North Carolina at Chapel Hill was compared against standard tiled 2D slice presentation on a viewbox. The system was evaluated for 23 complex cardiothoracic computed tomographic (CT) cases including heart-lung and lung transplantation, tumor resection, airway stent placement, repair of congenital heart defects, aortic aneurysm repair, and resection of pulmonary arteriovenous malformation. Radiologists and surgeons recorded their impressions with and without the use of the interactive visualization system.
RESULTS: The cardiothoracic surgeons reported positive benefits to using the 3D visualizations. The addition of the 3D visualization changed the surgical plan (65% of cases), increased the surgeon's confidence (on average 40% per case), and correlated well with the anatomy found at surgery (95% of cases). The radiologists reported fewer and less major changes than the surgeons in their understanding of the case due to the 3D visualization. They found new findings or additional information about existing findings in 66% of the cases; however, they changed their radiology report in only 14% of the cases.
CONCLUSION: With the appropriate choice of 3D real-time volume rendering and a well-designed user interface, both surgeons and radiologists benefit from viewing an interactive 3D visualization in addition to 2D images for surgery planning and diagnostic evaluation of complex cardiothoracic cases. This study finds that 3D visualization is especially helpful to the surgeon in understanding the case, and in communicating and planning the surgery. These results suggest that including real-time 3D visualization would be of clinical benefit for complex cardiothoracic CT cases
Interpretation of CT studies: single-screen workstation versus film alternator
A prototype single-screen workstation with a 2,048 x 2,560-pixel high-brightness monitor, 0.11-second image display time, and simple ergonomic design was compared to a conventional horizontal film alternator in diagnostic interpretation of chest computed tomography (CT) studies. Four radiologists used either the workstation or film alternator in interpretation of studies obtained in 10 patients. A counterbalanced within-subject repeated measures experimental design was used. Response times were analyzed for both methods of interpretation. Grades of excellent, acceptable, and unacceptable were assigned by a blinded "grader" to reports of the radiologists. The average time needed for an interpretation at the workstation was 5.65 minutes. No interpretations were graded unacceptable. Retrospective power analysis showed that 16 observers rather than four would have been required to show that use of the workstation was faster than the alternator. With this 95% confidence interval, the workstation interpretation time is clinically equivalent to that with the alternator. These data show that this type of workstation has practical application in interpretation of CT, magnetic resonance imaging, and ultrasound studies
Quasiparticle interfacial level alignment of highly hybridized frontier levels: HO on TiO(110)
Knowledge of the frontier levels' alignment prior to photo-irradiation is
necessary to achieve a complete quantitative description of HO
photocatalysis on TiO(110). Although HO on rutile TiO(110) has been
thoroughly studied both experimentally and theoretically, a quantitative value
for the energy of the highest HO occupied levels is still lacking. For
experiment, this is due to the HO levels being obscured by hybridization
with TiO(110) levels in the difference spectra obtained via ultraviolet
photoemission spectroscopy (UPS). For theory, this is due to inherent
difficulties in properly describing many-body effects at the
HO-TiO(110) interface. Using the projected density of states (DOS) from
state-of-the-art quasiparticle (QP) , we disentangle the adsorbate and
surface contributions to the complex UPS spectra of HO on TiO(110). We
perform this separation as a function of HO coverage and dissociation on
stoichiometric and reduced surfaces. Due to hybridization with the TiO(110)
surface, the HO 3a and 1b levels are broadened into several peaks
between 5 and 1 eV below the TiO(110) valence band maximum (VBM). These
peaks have both intermolecular and interfacial bonding and antibonding
character. We find the highest occupied levels of HO adsorbed intact and
dissociated on stoichiometric TiO(110) are 1.1 and 0.9 eV below the VBM. We
also find a similar energy of 1.1 eV for the highest occupied levels of HO
when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In
both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than
those estimated from UPS difference spectra, which are inconclusive in this
energy region. Finally, we apply self-consistent QP (scQP1) to obtain
the ionization potential of the HO-TiO(110) interface.Comment: 12 pages, 12 figures, 1 tabl
Adaptation to Visual Feedback Delay Influences Visuomotor Learning
Computational theory of motor control suggests that the brain continuously monitors motor commands, to predict their sensory consequences before actual sensory feedback becomes available. Such prediction error is a driving force of motor learning, and therefore appropriate associations between motor commands and delayed sensory feedback signals are crucial. Indeed, artificially introduced delays in visual feedback have been reported to degrade motor learning. However, considering our perceptual ability to causally bind our own actions with sensory feedback, demonstrated by the decrease in the perceived time delay following repeated exposure to an artificial delay, we hypothesized that such perceptual binding might alleviate deficits of motor learning associated with delayed visual feedback. Here, we evaluated this hypothesis by investigating the ability of human participants to adapt their reaching movements in response to a novel visuomotor environment with 3 visual feedback conditions—no-delay, sudden-delay, and adapted-delay. To introduce novelty into the trials, the cursor position, which originally indicated the hand position in baseline trials, was rotated around the starting position. In contrast to the no-delay condition, a 200-ms delay was artificially introduced between the cursor and hand positions during the presence of visual rotation (sudden-delay condition), or before the application of visual rotation (adapted-delay condition). We compared the learning rate (representing how the movement error modifies the movement direction in the subsequent trial) between the 3 conditions. In comparison with the no-delay condition, the learning rate was significantly degraded for the sudden-delay condition. However, this degradation was significantly alleviated by prior exposure to the delay (adapted-delay condition). Our data indicate the importance of appropriate temporal associations between motor commands and sensory feedback in visuomotor learning. Moreover, they suggest that the brain is able to account for such temporal associations in a flexible manner
Reduction in Learning Rates Associated with Anterograde Interference Results from Interactions between Different Timescales in Motor Adaptation
Prior experiences can influence future actions. These experiences can not only drive adaptive changes in motor output, but they can also modulate the rate at which these adaptive changes occur. Here we studied anterograde interference in motor adaptation – the ability of a previously learned motor task (Task A) to reduce the rate of subsequently learning a different (and usually opposite) motor task (Task B). We examined the formation of the motor system's capacity for anterograde interference in the adaptive control of human reaching-arm movements by determining the amount of interference after varying durations of exposure to Task A (13, 41, 112, 230, and 369 trials). We found that the amount of anterograde interference observed in the learning of Task B increased with the duration of Task A. However, this increase did not continue indefinitely; instead, the interference reached asymptote after 15–40 trials of Task A. Interestingly, we found that a recently proposed multi-rate model of motor adaptation, composed of two distinct but interacting adaptive processes, predicts several key features of the interference patterns we observed. Specifically, this computational model (without any free parameters) predicts the initial growth and leveling off of anterograde interference that we describe, as well as the asymptotic amount of interference that we observe experimentally (R2 = 0.91). Understanding the mechanisms underlying anterograde interference in motor adaptation may enable the development of improved training and rehabilitation paradigms that mitigate unwanted interference
Erasing Sensorimotor Memories via PKMζ Inhibition
Sensorimotor cortex has a role in procedural learning. Previous studies suggested that this learning is subserved by long-term potentiation (LTP), which is in turn maintained by the persistently active kinase, protein kinase Mzeta (PKMζ). Whereas the role of PKMζ in animal models of declarative knowledge is established, its effect on procedural knowledge is not well understood. Here we show that PKMζ inhibition, via injection of zeta inhibitory peptide (ZIP) into the rat sensorimotor cortex, disrupts sensorimotor memories for a skilled reaching task even after several weeks of training. The rate of relearning the task after the memory disruption by ZIP was indistinguishable from the rate of initial learning, suggesting no significant savings after the memory loss. These results indicate a shared molecular mechanism of storage for declarative and procedural forms of memory
- …