12 research outputs found

    Epidemiologic study of low back pain in 1398 Swiss conscripts between 1985 and 1992.

    No full text
    The two objectives of this study, based on a sample of 1398 Swiss army conscripts born in 1966 who participated in a first study in 1985, were to measure the prevalence of low back pain (LBP) at age 26 years and its incidence between 19 and 26 years and to analyze the relationship between LBP and occupational, nonoccupational, or physical risk factors. The lifetime prevalence of LBP at age 26 was 69.1% and the incidence of LBP between 19 and 26, 44.7%. A history of LBP or a pathological physical examination result at age 19 did not predict the prevalence or the incidence at age 26. Standing, twisting, vibration, and heavy work were significantly associated with chronic LBP and/or the 1-year prevalence of LBP at age 26 (P < 0.05). The evolution of sport and leisure-time activities from age 19 to 26 did not differ between people with or without LBP. The ergonomic organization of the workplace should represent a major element of future strategies to prevent LBP

    ALICE A Large Ion Collider Experiment

    No full text
    POLAR-2 is a follow-up GRB mission of POLAR, which has observed low levels of polarization degree and a temporal evolution of the polarization angle, indicating that time resolved studies of γ\gamma photons polarization are required to constrain theoretical emission models of GRB’s. POLAR-2 detector aim to put in space a detector with one order of magnitude sensitivity improvement versus POLAR. POLAR-2 will be the most sensitive GRB detector covering half of the sky. The instrument, proposed by an international collaboration, was selected to be launched in 2024 to the China Space Station and operate for at least 2 years. POLAR-2 will use same plastic bar concept then POLAR but will be readout by SiPMT. The payload will also feature a spectrometer. The instrument is foreseen to perform detailed polarization measurements of at least 100 GRBs

    Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    No full text

    Upgrade of the ALICE Experiment: Letter of Intent

    No full text
    The long term goal of the ALICE experiment is to provide a precise characterization of the high-density, high-temperature phase of strongly interacting matter. To achieve this goal, high-statistics precision measurement are required. The general upgrade strategy for the ALICE detector is conceived to deal with this challenge with expected Pb-Pb interaction rates of up to 50 kHz aiming at an integrated luminosity of the order of 10 nb^-1. With the proposed timeline, starting the high-rate operation progressively after 2018 shutdown, the goals set up in our upgrade plans should be achieved collecting data until mid-2020's. In this document we present the main physics motivations for running the LHC with heavy ions at high luminosities and discuss the modifications and replacements needed in the ALICE detectors, the online systems and offline system. The schedule, cost estimate and organization of the upgrade programme are presented as well.ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark–Gluon Plasma (QGP), using proton–proton, proton–nucleus and nucleus–nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. These plans are presented in the ALICE Upgrade Letter of Intent, submitted to the LHCC (LHC experiments Committee) in September 2012. In order to fully exploit the physics reach of the LHC in this field, high-precision measurements of the heavy-flavour production, quarkonia, direct real and virtual photons, and jets are necessary. This will be achieved by an increase of the LHC Pb–Pb instant luminosity up to 6×1027 cm−2s−1 and running the ALICE detector with the continuous readout at the 50 kHz event rate. The physics performance accessible with the upgraded detector, together with the main detector modifications, are presented

    Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    No full text
    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark–Gluon Plasma (QGP), using proton–proton, proton–nucleus and nucleus–nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance

    Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    No full text
    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark–Gluon Plasma (QGP), using proton–proton, proton–nucleus and nucleus–nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance.peerReviewe

    Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    Get PDF
    ALICE (A Large Ion Collider Experiment) is preparing a major upgrade of its experimental apparatus, planned for installation in the second long LHC shutdown (LS2) in the years 2018-2019. These plans are presented in the ALICE Upgrade Letter of Intent submitted to the LHCC in September 2012. A key element of the upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System based on monolithic pixel detectors. This Technical Design Report is an update of the Conceptual Design Report for the Upgrade of the ALICE Inner Tracking System, which was presented to the LHCC in September 2012. The primary focus of the ITS upgrade is on the improved performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. The Conceptual Design Report demonstrated that it is possible to build a new silicon tracker with greatly improved features in terms of determination of the distance of closest approach to the primary vertex, tracking efficiency at low transverse momenta, and read-out rate capabilities. This document presents an update of R&D activities, with particular focus on the technical implementation of the main detector components, and detector and physics performance. The detector performance and physics studies are based on Monte Carlo simulations that include the transport of particles in a detailed model of the new detector

    Technical design report for the upgrade of the ALICE inner tracking system

    No full text
    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 \u3bcm thick CMOS pixel sensor with a pixel pitch of about 30 730 \u3bcm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance

    Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    No full text
    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark–Gluon Plasma (QGP), using proton–proton, proton–nucleus and nucleus–nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018–2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance

    Technical design report for the upgrade of the ALICE inner tracking system

    Get PDF
    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 \uce\ubcm thick CMOS pixel sensor with a pixel pitch of about 30\uc3\u9730 \uce\ubcm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance. \uc2\ua9 2014 CERN on behalf of The ALICE Collaboration
    corecore