138 research outputs found

    Supernova Kicks and Misaligned Be Star Binaries

    Full text link
    Be stars are rapidly spinning B stars surrounded by an outflowing disc of gas in Keplerian rotation. Be star/X-ray binary systems contain a Be star and a neutron star. They are found to have non-zero eccentricities and there is evidence that some systems have a misalignment between the spin axis of the star and the spin axis of the binary orbit. The eccentricities in these systems are thought to be caused by a kick to the neutron star during the supernova that formed it. Such kicks would also give rise to misalignments. In this paper we investigate the extent to which the same kick distribution can give rise to both the observed eccentricity distribution and the observed misalignments. We find that a Maxwellian distribution of velocity kicks with a low velocity dispersion, σk15kms1\sigma_k \approx 15\rm km s^{-1}, is consistent with the observed eccentricity distribution but is hard to reconcile with the observed misalignments, typically i25i \ge 25^\circ. Alternatively a higher velocity kick distribution, σk=265kms1\sigma_k = 265 \rm km s^{-1}, is consistent with the observed misalignments but not with the observed eccentricities, unless post-supernova circularisation of the binary orbits has taken place. We discuss briefly how this might be achieved.Comment: Accepted for publication in MNRA

    Radial Velocities of Six OB Stars

    Full text link
    We present new results from a radial velocity study of six bright OB stars with little or no prior measurements. One of these, HD 45314, may be a long-period binary, but the velocity variations of this Be star may be related to changes in its circumstellar disk. Significant velocity variations were also found for HD 60848 (possibly related to nonradial pulsations) and HD 61827 (related to wind variations). The other three targets, HD 46150, HD 54879, and HD 206183, are constant velocity objects, but we note that HD 54879 has Hα\alpha emission that may originate from a binary companion. We illustrate the average red spectrum of each target.Comment: Accepted for publication in PASP July 2007 issu

    The Full Spectrum Galactic Terrarium: MHz to TeV Observations of Various Critters

    Get PDF
    Multi-wavelength studies at radio, infrared, optical, X-ray, and TeV wavelengths have discovered probable counterparts to many Galactic sources of GeV emission detected by EGRET. These include pulsar wind nebulae, high mass X-ray binaries, and mixed morphology supernova remnants. Here we provide an overview of the observational properties of Galactic sources which emit across 19 orders of magnitude in energy. We also present new observations of several sources.Comment: 4 pages, 5 figures, Proceedings of the The 4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy, eds. Aharonian, Hofmann, Riege

    Runaway Massive Binaries and Cluster Ejection Scenarios

    Get PDF
    The production of runaway massive binaries offers key insights into the evolution of close binary stars and open clusters. The stars HD 14633 and HD 15137 are rare examples of such runaway systems, and in this work we investigate the mechanism by which they were ejected from their parent open cluster, NGC 654. We discuss observational characteristics that can be used to distinguish supernova ejected systems from those ejected by dynamical interactions, and we present the results of a new radio pulsar search of these systems as well as estimates of their predicted X-ray flux assuming that each binary contains a compact object. Since neither pulsars nor X-ray emission are observed in these systems, we cannot conclude that these binaries contain compact companions. We also consider whether they may have been ejected by dynamical interactions in the dense environment where they formed, and our simulations of four-body interactions suggest that a dynamical origin is possible but unlikely. We recommend further X-ray observations that will conclusively identify whether HD 14633 or HD 15137 contain neutron stars.Comment: Accepted to ApJ, 11 page

    Spectral Energy Distributions of Be and Other Massive Stars

    Full text link
    We present spectrophotometric data from 0.4 to 4.2 microns for bright, northern sky, Be stars and several other types of massive stars. Our goal is to use these data with ongoing, high angular resolution, interferometric observations to model the density structure and sky orientation of the gas surrounding these stars. We also present a montage of the H-alpha and near-infrared emission lines that form in Be star disks. We find that a simplified measurement of the IR excess flux appears to be correlated with the strength of emission lines from high level transitions of hydrogen. This suggests that the near-IR continuum and upper level line fluxes both form in the inner part of the disk, close to the star.Comment: 2010, PASP, 122, 37

    The Long Period, Massive Binaries HD 37366 and HD 54662: Potential Targets for Long Baseline Optical Interferometry

    Full text link
    We present the results from an optical spectroscopic analysis of the massive stars HD 37366 and HD 54662. We find that HD 37366 is a double-lined spectroscopic binary with a period of 31.8187 +/- 0.0004 days, and HD 54662 is also a double lined binary with a much longer period of 557.8 +/- 0.3 days. The primary of HD 37366 is classified as O9.5 V, and it contributes approximately two-thirds of the optical flux. The less luminous secondary is a broad-lined, early B-type main-sequence star. Tomographic reconstruction of the individual spectra of HD 37366 reveals absorption lines present in each component, enabling us to constrain the nature of the secondary and physical characteristics of both stars. Tomographic reconstruction was not possible for HD 54662; however, we do present mean spectra from our observations that show that the secondary component is approximately half as bright as the primary. The observed spectral energy distributions (SEDs) were fit with model SEDs and galactic reddening curves to determine the angular sizes of the stars. By assuming radii appropriate for their classifications, we determine distance ranges of 1.4 - 1.9 and 1.2 - 1.5 kpc for HD 37366 and HD 54662, respectively.Comment: 27 pages, 8 figures, Accepted for publication in Ap

    Spectral and spatial imaging of the Be+sdO binary phi Persei

    Full text link
    The rapidly rotating Be star phi Persei was spun up by mass and angular momentum transfer from a now stripped-down, hot subdwarf companion. Here we present the first high angular resolution images of phi Persei made possible by new capabilities in longbaseline interferometry at near-IR and visible wavelengths. We observed phi Persei with the MIRC and VEGA instruments of the CHARA Array. Additional MIRC-only observations were performed to track the orbital motion of the companion, and these were fit together with new and existing radial velocity measurements of both stars to derive the complete orbital elements and distance. The hot subdwarf companion is clearly detected in the near-IR data at each epoch of observation with a flux contribution of 1.5% in the H band, and restricted fits indicate that its flux contribution rises to 3.3% in the visible. A new binary orbital solution is determined by combining the astrometric and radial velocity measurements. The derived stellar masses are 9.6+-0.3Msol and 1.2+-0.2Msol for the Be primary and subdwarf secondary, respectively. The inferred distance (186 +- 3 pc), kinematical properties, and evolutionary state are consistent with membership of phi Persei in the alpha Per cluster. From the cluster age we deduce significant constraints on the initial masses and evolutionary mass transfer processes that transformed the phi Persei binary system. The interferometric data place strong constraints on the Be disk elongation, orientation, and kinematics, and the disk angular momentum vector is coaligned with and has the same sense of rotation as the orbital angular momentum vector. The VEGA visible continuum data indicate an elongated shape for the Be star itself, due to the combined effects of rapid rotation, partial obscuration of the photosphere by the circumstellar disk, and flux from the bright inner disk.Comment: 16 pages, 6 figures, 1 Anne

    A Spectroscopic Study of Mass Outflows in the Interacting Binary RY Scuti

    Full text link
    The massive interacting binary RY Scuti is an important representative of an active mass-transferring system that is changing before our eyes and which may be an example of the formation of a Wolf-Rayet star through tidal stripping. Utilizing new and previously published spectra, we present examples of how a number of illustrative absorption and emission features vary during the binary orbit. We identify spectral features associated with each component, calculate a new, double-lined spectroscopic binary orbit, and find masses of 7.1 +/- 1.2 M_sun for the bright supergiant and 30.0 +/- 2.1 M_sun for the hidden massive companion. Through tomographic reconstruction of the component spectra from the composite spectra, we confirm the O9.7 Ibpe spectral class of the bright supergiant and discover a B0.5 I spectrum associated with the hidden massive companion; however, we suggest that the latter is actually the spectrum of the photosphere of the accretion torus immediately surrounding the massive companion. We describe the complex nature of the mass loss flows from the system in the context of recent hydrodynamical models for beta Lyr, leading us to conclude RY Scuti has matter leaving the system in two ways: 1) a bipolar outflow from winds generated by the hidden massive companion, and 2) mass from the bright O9.7 Ibpe supergiant flowing from the region near the L2 point to fill out a large, dense circumbinary disk. This circumbinary disk (radius ~ 1 AU) may feed the surrounding double-toroidal nebula (radius ~ 2000 AU).Comment: 41 pages with 7 tables and 11 figures, accepted to Ap

    Now you see it, now you don't - the circumstellar disk in the GRO J1008--57 system

    Full text link
    Multiwavelength observations are reported here of the Be/X-ray binary pulsar system GRO J1008-57. Over ten years worth of data are gathered together to show that the periodic X-ray outbursts are dependant on both the binary motion and the size of the circumstellar disk. In the first instance an accurate orbital solution is determined from pulse periods, and in the second case the strength and shape of the Halpha emission line is shown to be a valuable indicator of disk size and its behaviour. Furthermore, the shape of the emission line permits a direct determination of the disk size which is in good agreement with theoretical estimates. A detailed study of the pulse period variations during outbursts determined the binary period to be 247.8, in good agreement with the period determined from the recurrence of the outbursts.Comment: Accepted for publication in MNRA
    corecore