162 research outputs found

    Equianalytic and equisingular families of curves on surfaces

    Get PDF
    We consider flat families of reduced curves on a smooth surface S such that each member C has the same number of singularities of fixed singularity types and the corresponding (locally closed) subscheme H of the Hilbert scheme of S. We are mainly concerned with analytic resp. topological singularity types and give a sufficient condition for the smoothness of H (at C). Our results for S=P^2 seem to be quite sharp for families of cuves of small degree d.Comment: LaTeX v 2.0

    On the Milnor formula in arbitrary characteristic

    Full text link
    The Milnor formula μ=2δr+1\mu=2\delta-r+1 relates the Milnor number μ\mu, the double point number δ\delta and the number rr of branches of a plane curve singularity. It holds over the fields of characteristic zero. Melle and Wall based on a result by Deligne proved the inequality μ2δr+1\mu\geq 2\delta-r+1 in arbitrary characteristic and showed that the equality μ=2δr+1\mu=2\delta-r+1 characterizes the singularities with no wild vanishing cycles. In this note we give an account of results on the Milnor formula in characteristic pp. It holds if the plane singularity is Newton non-degenerate (Boubakri et al. Rev. Mat. Complut. (2010) 25) or if pp is greater than the intersection number of the singularity with its generic polar (Nguyen H.D., Annales de l'Institut Fourier, Tome 66 (5) (2016)). Then we improve our result on the Milnor number of irreducible singularities (Bull. London Math. Soc. 48 (2016)). Our considerations are based on the properties of polars of plane singularities in characteristic pp.Comment: 18 page

    Alternative display and interaction devices

    Get PDF
    While virtual environment systems are typically thought to consist of a head mounted display and a flex-sensing glove, alternative peripheral devices are beginning to be developed in response to application requirements. Three such alternatives are discussed: fingertip sensing gloves, fixed stereoscopic viewers, and counterbalanced head mounted displays. A subset of commercial examples that highlight each alternative is presented as well as a brief discussion of interesting engineering and implementation issues

    Matrix Factorizations, Minimal Models and Massey Products

    Get PDF
    We present a method to compute the full non-linear deformations of matrix factorizations for ADE minimal models. This method is based on the calculation of higher products in the cohomology, called Massey products. The algorithm yields a polynomial ring whose vanishing relations encode the obstructions of the deformations of the D-branes characterized by these matrix factorizations. This coincides with the critical locus of the effective superpotential which can be computed by integrating these relations. Our results for the effective superpotential are in agreement with those obtained from solving the A-infinity relations. We point out a relation to the superpotentials of Kazama-Suzuki models. We will illustrate our findings by various examples, putting emphasis on the E_6 minimal model.Comment: 32 pages, v2: typos corrected, v3: additional comments concerning the bulk-boundary crossing constraint, some small clarifications, typo

    Deterministically Computing Reduction Numbers of Polynomial Ideals

    Full text link
    We discuss the problem of determining reduction number of a polynomial ideal I in n variables. We present two algorithms based on parametric computations. The first one determines the absolute reduction number of I and requires computation in a polynomial ring with (n-dim(I))dim(I) parameters and n-dim(I) variables. The second one computes via a Grobner system the set of all reduction numbers of the ideal I and thus in particular also its big reduction number. However,it requires computations in a ring with n.dim(I) parameters and n variables.Comment: This new version replaces the earlier version arXiv:1404.1721 and it has been accepted for publication in the proceedings of CASC 2014, Warsaw, Polna

    Generating Non-Linear Interpolants by Semidefinite Programming

    Full text link
    Interpolation-based techniques have been widely and successfully applied in the verification of hardware and software, e.g., in bounded-model check- ing, CEGAR, SMT, etc., whose hardest part is how to synthesize interpolants. Various work for discovering interpolants for propositional logic, quantifier-free fragments of first-order theories and their combinations have been proposed. However, little work focuses on discovering polynomial interpolants in the literature. In this paper, we provide an approach for constructing non-linear interpolants based on semidefinite programming, and show how to apply such results to the verification of programs by examples.Comment: 22 pages, 4 figure

    Non-geometric flux vacua, S-duality and algebraic geometry

    Get PDF
    The four dimensional gauged supergravities descending from non-geometric string compactifications involve a wide class of flux objects which are needed to make the theory invariant under duality transformations at the effective level. Additionally, complex algebraic conditions involving these fluxes arise from Bianchi identities and tadpole cancellations in the effective theory. In this work we study a simple T and S-duality invariant gauged supergravity, that of a type IIB string compactified on a T6/(Z2xZ2)T^6/(Z_2 x Z_2) orientifold with O3/O7-planes. We build upon the results of recent works and develop a systematic method for solving all the flux constraints based on the algebra structure underlying the fluxes. Starting with the T-duality invariant supergravity, we find that the fluxes needed to restore S-duality can be simply implemented as linear deformations of the gauge subalgebra by an element of its second cohomology class. Algebraic geometry techniques are extensively used to solve these constraints and supersymmetric vacua, centering our attention on Minkowski solutions, become systematically computable and are also provided to clarify the methods.Comment: 47 pages, 10 tables, typos corrected, Accepted for Publication in Journal of High Energy Physic

    Differential Forms on Log Canonical Spaces

    Get PDF
    The present paper is concerned with differential forms on log canonical varieties. It is shown that any p-form defined on the smooth locus of a variety with canonical or klt singularities extends regularly to any resolution of singularities. In fact, a much more general theorem for log canonical pairs is established. The proof relies on vanishing theorems for log canonical varieties and on methods of the minimal model program. In addition, a theory of differential forms on dlt pairs is developed. It is shown that many of the fundamental theorems and techniques known for sheaves of logarithmic differentials on smooth varieties also hold in the dlt setting. Immediate applications include the existence of a pull-back map for reflexive differentials, generalisations of Bogomolov-Sommese type vanishing results, and a positive answer to the Lipman-Zariski conjecture for klt spaces.Comment: 72 pages, 6 figures. A shortened version of this paper has appeared in Publications math\'ematiques de l'IH\'ES. The final publication is available at http://www.springerlink.co

    Charting the landscape of N=4 flux compactifications

    Get PDF
    We analyse the vacuum structure of isotropic Z_2 x Z_2 flux compactifications, allowing for a single set of sources. Combining algebraic geometry with supergravity techniques, we are able to classify all vacua for both type IIA and IIB backgrounds with arbitrary gauge and geometric fluxes. Surprisingly, geometric IIA compactifications lead to a unique theory with four different vacua. In this case we also perform the general analysis allowing for sources compatible with minimal supersymmetry. Moreover, some relevant examples of type IIB non-geometric compactifications are studied. The computation of the full N=4 mass spectrum reveals the presence of a number of non-supersymmetric and nevertheless stable AdS_4 vacua. In addition we find a novel dS_4 solution based on a non-semisimple gauging.Comment: Minor corrections and references added. Version published in JHE

    The Degree and regularity of vanishing ideals of algebraic toric sets over finite fields

    Full text link
    Let X* be a subset of an affine space A^s, over a finite field K, which is parameterized by the edges of a clutter. Let X and Y be the images of X* under the maps x --> [x] and x --> [(x,1)] respectively, where [x] and [(x,1)] are points in the projective spaces P^{s-1} and P^s respectively. For certain clutters and for connected graphs, we were able to relate the algebraic invariants and properties of the vanishing ideals I(X) and I(Y). In a number of interesting cases, we compute its degree and regularity. For Hamiltonian bipartite graphs, we show the Eisenbud-Goto regularity conjecture. We give optimal bounds for the regularity when the graph is bipartite. It is shown that X* is an affine torus if and only if I(Y) is a complete intersection. We present some applications to coding theory and show some bounds for the minimum distance of parameterized linear codes for connected bipartite graphs
    corecore