930 research outputs found

    Depletion isolation effect in Vertical MOSFETS during transition from partial to fully depleted operation

    No full text
    A simulation study is made of floating-body effects (FBEs) in vertical MOSFETs due to depletion isolation as the pillar thickness is reduced from 200 to 10 nm. For pillar thicknesses between 200–60 nm, the output characteristics with and without impact ionization are identical at a low drain bias and then diverge at a high drain bias. The critical drain bias Vdc for which the increased drain–current is observed is found to decrease with a reduction in pillar thickness. This is explained by the onset of FBEs at progressively lower values of the drain bias due to the merging of the drain depletion regions at the bottom of the pillar (depletion isolation). For pillar thicknesses between 60–10 nm, the output characteristics show the opposite behavior, namely, the critical drain bias increases with a reduction in pillar thickness. This is explained by a reduction in the severity of the FBEs due to the drain debiasing effect caused by the elevated body potential. Both depletion isolation and gate–gate coupling contribute to the drain–current for pillar thicknesses between 100–40 nm

    Asymmetric gate induced drain leakage and body leakage in vertical MOSFETs with reduced parasitic capacitance

    No full text
    Vertical MOSFETs, unlike conventional planar MOSFETs, do not have identical structures at the source and drain, but have very different gate overlaps and geometric configurations. This paper investigates the effect of the asymmetric source and drain geometries of surround-gate vertical MOSFETs on the drain leakage currents in the OFF-state region of operation. Measurements of gate-induced drain leakage (GIDL) and body leakage are carried out as a function of temperature for transistors connected in the drain-on-top and drain-on-bottom configurations. Asymmetric leakage currents are seen when the source and drain terminals are interchanged, with the GIDL being higher in the drain-on-bottom configuration and the body leakage being higher in the drain-on-top configuration. Band-to-band tunneling is identified as the dominant leakage mechanism for both the GIDL and body leakage from electrical measurements at temperatures ranging from ?50 to 200?C. The asymmetric body leakage is explained by a difference in body doping concentration at the top and bottom drain–body junctions due to the use of a p-well ion implantation. The asymmetric GIDL is explained by the difference in gate oxide thickness on the vertical (110) pillar sidewalls and the horizontal (100) wafer surface

    Depletion-Isolation Effect in Vertical MOSFETs During the Transition From Partial to Fully Depleted Operation

    No full text
    A simulation study is made of floating-body effects (FBEs) in vertical MOSFETs due to depletion isolation as the pillar thickness is reduced from 200 to 10 nm. For pillar thicknesses between 200–60 nm, the output characteristics with and without impact ionization are identical at a low drain bias and then diverge at a high drain bias. The critical drain bias Vdc for which the increased drain–current is observed is found to decrease with a reduction in pillar thickness. This is explained by the onset of FBEs at progressively lower values of the drain bias due to the merging of the drain depletion regions at the bottom of the pillar (depletion isolation). For pillar thicknesses between 60–10 nm, the output characteristics show the opposite behavior, namely, the critical drain bias increases with a reduction in pillar thickness. This is explained by a reduction in the severity of the FBEs due to the drain debiasing effect caused by the elevated body potential. Both depletion isolation and gate–gate coupling contribute to the drain–current for pillar thicknesses between 100–40 nm

    Foreword

    Get PDF

    Innovative Aircraft Aeroelastic Modelling and Control

    Get PDF
    The aeroelastic design of innovative aircraft wing configurations imposes the designer to deal with specific phenomena, which are not usually considered in classical aircraft definition. The design process itself, though, gives the designer several indications on how to maintain the safety standards imposed by regulations. The investigation of the basic aeroelastic principles for unconventional wings with high aspect ratios can be extremely interesting as, once introduced in a multidisciplinary design, they can be very effective in giving an early determination of the static and dynamic behaviour of the aircraft, leading to significant improvements in the configuration weight, cost, and overall performance. The paper shows some preliminary results as part of the main objectives of the In.A.Team group (Innovative Aircraft Theoretical-Experimental Aeroelastic Modelling) at Politecnico di Torino, Italy. The In.A.Team Project has the following main objectives: 1) to develop multidisciplinary analysis methods appropriate to unconventional aircrafts (highly flexible, "morphing" vehicles); 2) to develop the capability of illustrating and understanding the effects of uncertainties on the behaviour of an aeroelastic system; 3) to apply the innovative adaptive L1 control techniques to highly flexible wings, 4) to integrate theoretical analysis with commercial structural (FEM) and aerodynamic tools (CFD). 5) to design and manufacture an aeroelastic experimental-test-model. 6) to validate theoretical/numerical results by vibration and aeroelastic wind tunnel tests

    What is the real isotopic signature of dust emitted from Tierra del Fuego?

    Get PDF
    Fil: Gaiero, D.M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones en Ciencias de la Tierra; Argentina.Fil: Gili, S. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones en Ciencias de la Tierra; Argentina.Fil: Strelin, J. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones en Ciencias de la Tierra; Argentina.Fil: Strelin, J. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Antártico Argentino; Argentina.Fil: Koestner, E. IG-UFRGS. Laboratório de Geología Isotópica; Brasil.Fil: Chemale Jr, F. IG-UFRGS. Laboratório de Geología Isotópica; Brasil.Sugden et al. (2009) suggested an on/off switch mechanism that could explain the 20 times increase of dust deposition in Antarctica during the Last Glacial Maximum (LGM), as compared to present day. This suggested switch resides in Patagonian pro-glacial lakes; when glaciers retreat sediments are deposited in the lakes and dust emission ceased in opposition to cold periods, when glacial pour out sediments to the outwash plain, then increasing dust emission. The on/off switch mechanism proposed is supported on age analyses and strontium (Sr) and neodymium (Nd) isotope ratios of ancient lacustrine sediment samples from the Magellan Strait (MS) and from the North Patagonian icefield (NPI). The lacustrine sediments were used as representative of sediments that were disgorged to the outwash plain during the LGM. We argue on the type of samples used to characterize the possible Patagonian outwash sediments deflated during the LGM and accordingly, on the interpretation of the source of this dust. Modern sediments are deflated from the Patagonian surface mainly from widespread ephemeral lakes (Gaiero 2007), which are sporadically refilled with sediments supplied from the surrounding areas mainly through water runoff. The aim of this contribution is to discuss about this and contrast data from both set of samples and discuss about their significance for the interpretation of the isotopic signatures recorded on the sedimentary archives of the Southern Hemisphere (e.g., Antarctic ice cores). Fig. 1 shows that the mean isotopic composition of dry lake sediments (collected from the ancient outwash plain in the San Sebastián Bay area) and dust collected at Río Grande are significantly different compared to MS samples and very similar to sediments representing the Fuegian continental shelf (Basile et al. 2007). Similar to modern dust released from continental Patagonia (north of ~52° S), modern data from Tierra del Fuego could also be explained by a mixing between Jurassic rhyolites and Quaternary volcanic rocks (e.g., Gaiero et al. 2007; Fig. 1). On the contrary, the samples used by Sugden et al. (2009) seem to characterize discrete sources. The isotopic composition of most samples from the MS plots mostly within the compositional field corresponding to the Antarctic Jurassic rhyolites and similar rocks that outcrop out close along the Fuegian Cordillera (Gaiero et al. 2007). In the case of NPI samples, their compositions are similar to the local outcropping Paleozoic plutonic and metasedimentary rocks (Killian and Behrmann 2003). Nevertheless, directly to the W of the NPI, the isotopic composition of Pliocene/Pleistocene Chilean trench sediments (mean 87Sr/86Sr = 0.707 and δNd(0) = -2.1) indicates a variable contribution from other rocks cropping out in the area (e.g., Quaternary volcanic rocks). Why MS and NPI samples are different from modern Patagonian dust?Fil: Gaiero, D.M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones en Ciencias de la Tierra; Argentina.Fil: Gili, S. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones en Ciencias de la Tierra; Argentina.Fil: Strelin, J. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones en Ciencias de la Tierra; Argentina.Fil: Strelin, J. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Antártico Argentino; Argentina.Fil: Koestner, E. IG-UFRGS. Laboratório de Geología Isotópica; Brasil.Fil: Chemale Jr, F. IG-UFRGS. Laboratório de Geología Isotópica; Brasil.Geoquímica y Geofísic

    Programmable logic circuits for functional integrated smart plastic systems

    Get PDF
    In this paper, we present a functional integrated plastic system. We have fabricated arrays of organic thin-film transistors (OTFTs) and printed electronic components driving an electrophoretic ink display up to 70mm by 70mm on a single flexible transparent plastic foil. Transistor arrays were quickly and reliably configured for different logic functions by an additional process step of inkjet printing conductive silver wires and poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) resistors between transistors or between logic blocks. Among the circuit functions and features demonstrated on the arrays are a 7-stage ring oscillator, a D-type ip-flop memory element, a 2:4 demultiplexer, a programmable array logic device (PAL), and printed wires and resistors. Touch input sensors were also printed, thus only external batteries were required for a complete electronic subsystem. The PAL featured 8 inputs, 8 outputs, 32 product terms, and had 1260 p-type polymer transistors in a 3-metal process using diode-load logic. To the best of our knowledge, this is the first time that a PAL concept with organic transistors has been demonstrated, and also the first time that organic transistors have been used as the control logic for a flexible display which have both been integrated on to a single plastic substrate. The versatility afforded by the additive inkjet printing process is well suited to organic programmable logic on plastic substrates, in effect, making flexible organic electronics more flexibleRCUK, OtherThis is the final published version. It is also available from Elsevier at http://www.sciencedirect.com/science/article/pii/S1566119914003607#
    corecore