461 research outputs found

    Hydrodynamics in evaporate-bearing fine-grained successions investigated through an interdisciplinary approach : A test study in southern Italy-hydrogeological behaviour of heterogeneous low-permeability media

    Get PDF
    Messinian evaporates are widely distributed in the Mediterranean Sea as outcropping sediments in small marginal basins and in marine cores. Progressive filling of subbasins led to the formation of complex aquifer systems in different regions where hypersaline and fresh water coexist and interact in different manner. It also generates a significant diversification of groundwater hydrochemical signature and different microbial communities. In the case study, the hydrogeology and hydrochemistry of the whole system are influenced by good hydraulic connection between the shallower pyroclastic horizon and the underlying evaporate-bearing fine-grained Messinian succession. This is demonstrated by the merge of hydrogeological, chemical, isotopic, and microbiological data. No mixing with deep ascending waters has been observed. As shown by geophysical, hydraulic, and microbiological investigations, the hydraulic heterogeneity of the Messinian bedrock, mainly due to karstified evaporitic interstrata/lenses, causes the hydraulic head to significantly vary with depth. Somewhere, the head increases with the depth's increase and artesian flow conditions are locally observed. Moreover, the metagenomic investigations demonstrated the existence of a poor hydraulic connection within the evaporate-bearing fine-grained succession at metric and decametric scales, therefore leading to a patchwork of geochemical (and microbiological) subenvironments

    A multi-parameter field monitoring system to investigate the dynamics of large earth slides–earth flows in the Northern Apennines, Italy

    Get PDF
    Large earth slides and rocks lides evolving into earth flows are quite widespread in the Northern Italian Apennines. Despite being simply referred to as landslides, many of them are, in fact, large complexes of landslides. They evolved through multiple and/or successive movements, undergoing partial and/or total reactivations. The reactivation of pre-existing landslide bodies is the prevalent mechanism for the known landslide events, as the historical records and the technical reports indicate. Landslide reactivation is, indeed, a relevant topic from the perspective of risk assessment and mitigation. A multi-parameter monitoring system was installed on a large complex of landslides that underwent partial or total reactivations after heavy rainfall events, causing damages to buildings and infrastructures. Two clusters of automatic piezometers—each coupled with an inclinometer—and a time-lapse resistivity deployment were the core of the monitoring system. A weather station, collecting data from subsurface thermometers, and a water content probe completed the system. After the construction of a new geological model of the slope, this study aimed at understanding the possible mechanisms leading to the reactivation of the landslide. This goal was achieved by gaining insights into the process of rainfall infiltration into the landslide deposits, by determining the groundwater flow and evaluating the landslide displacements. The monitoring system captured the processes that took place in the landslide bodies and the bedrock in response to a rainfall event in early February 2017, which followed a dry period of eight months. The recorded data provided indications on the variation of the hydraulic head in the groundwater within the landslide and the bedrock, particularly at the sliding surfaces. The electrical conductivity of the groundwater and the resistivity of the terrain varied across the failure surfaces. In particular, a sudden increase in the electrical conductivity was related to the locations of the main sliding surfaces. The joint analysis of time-lapse resistivity, hydraulic heads, and groundwater electrical conductivity helped identify the locations of weaker levels within the landslide masses, which were confirmed by data from inclinometers. This study improved the knowledge of the hydrogeological behaviour of a complex of landslides in heterogeneous low-permeability media. Moreover, the obtained results contributed to the understanding of the role played by different portions of the landslide complex in the evolution of the movement

    Extracellular vesicles in human preterm colostrum inhibit infection by human cytomegalovirus in vitro

    Get PDF
    Breast milk is a complex biofluid that nourishes infants, supports their growth and protects them from diseases. However, at the same time, breastfeeding is a transmission route for human cytomegalovirus (HCMV), with preterm infants being at a great risk of congenital disease. The discrepancy between high HCMV transmission rates and the few reported cases of infants with severe clinical illness is likely due to the protective effect of breast milk. The aim of this study was to investigate the anti-HCMV activity of human preterm colostrum and clarify the role of colostrum-derived extracellular vesicles (EVs). Preterm colostrum samples were collected and the EVs were purified and characterized. The in vitro anti-HCMV activity of both colostrum and EVs was tested against HCMV, and the viral replication step inhibited by colostrum-purified EVs was examined. We investigated the putative role EV surface proteins play in impairing HCMV infection using shaving experiments and proteomic analysis. The obtained results confirmed the antiviral action of colostrum against HCMV and demonstrated a remarkable antiviral activity of colostrum-derived EVs. Furthermore, we demonstrated that EVs impair the attachment of HCMV to cells, with EV surface proteins playing a role in mediating this action. These findings contribute to clarifying the mechanisms that underlie the protective role of human colostrum against HCMV infection

    How do turbidite systems behave from the hydrogeological point of view? New insights and open questions coming from an interdisciplinary work in southern Italy

    Get PDF
    Turbidite successions can behave either as aquitards or aquifers depending on their lithological and hydraulic features. In particular, post-depositional processes can increase rock permeability due to fracture development in the competent layers. Thus, at a local scale, turbidite systems warrant further detailed investigations, aimed at reconstructing reliable hydrogeological models. The objective of this work was to investigate from the hydrogeological perspective a turbiditic aquifer located in southern Italy, where several perennial and seasonal springs were detected. Considering the complex hydrodynamics of these systems at the catchment scale, to reach an optimal characterization, a multidisciplinary approach was adopted. The conceptual framework employed microbial communities as groundwater tracers, together with the physicochemical features and isotopic signature of springs and streams from water samples. Meanwhile, geophysical investigations coupled with the geological survey provided the contextualization of the hydrogeological data into the detailed geological reconstruction of the study area. This modus operandi allowed us to typify several differences among the samples, allowing identification of sources and paths of surface water and groundwater, along with diffuse groundwater outflow along streams. As a final result, a hydrogeological conceptual model was reconstructed, underlining how at a very local scale the lithologic, hydraulic, and geomorphological heterogeneity of the studied relief can lead to an improved hydrogeological conceptual model compared to that of other turbidite systems. These results open new questions about the hydrogeological behavior of turbiditic aquifers, which could be pivotal in future research. In fact, these systems could support relevant ecosystems and anthropic activities, especially where climate change will force the research of new (and probably less hydrogeologically efficient) water sources

    A proteomic approach for the rapid, multi-informative and reliable identification of blood

    Get PDF
    Blood evidence is frequently encountered at the scene of violent crimes and can provide valuable intelligence in the forensic investigation of serious offences. Because many of the current enhancement methods used by crime scene investigators are presumptive, the visualisation of blood is not always reliable nor does it bear additional information. In the work presented here, two methods employing a shotgun bottom up proteomic approach for the detection of blood are reported; the developed protocols employ both an in solution digestion method and a recently proposed procedure involving immobilization of trypsin on hydrophobin Vmh2 coated MALDI sample plate. The methods are complementary as whilst one yields more identifiable proteins (as biomolecular signatures), the other is extremely rapid (5 minutes). Additionally, data demonstrate the opportunity to discriminate blood provenance even when two different blood sources are present in a mixture. This approach is also suitable for old bloodstains which had been previously chemically enhanced, as experiments conducted on a 9-year-old bloodstain deposited on a ceramic tile demonstrate

    High Temperature—Short Time Pasteurization Has a Lower Impact on the Antiviral Properties of Human Milk Than Holder Pasteurization

    Get PDF
    Holder pasteurization (62. 5°C for 30 min) is recommended by all international human milk bank guidelines to prevent infections potentially transmitted by donor human milk. A drawback is that it affects some human milk bioactive and nutritive components. Recently, High Temperature-Short Time (HTST) pasteurization has been reported to be a valuable alternative technology to increase the retention of some biological features of human milk. Nevertheless, to date, few data are available about the impact of pasteurization methods other than Holder on the antiviral activity of human milk. The present study was aimed at evaluating the antiviral activity of human milk against a panel of viral pathogens common in newborns and children (i.e., herpes simplex virus 1 and 2, cytomegalovirus, respiratory syncytial virus, rotavirus, and rhinovirus), and at assessing the effect of Holder and HTST pasteurization on milk's antiviral properties. The results indicate that human milk is endowed with antiviral activity against all viruses tested, although to a different extent. Unlike the Holder pasteurization, HTST preserved the inhibitory activity against cytomegalovirus, respiratory syncytial virus, rotavirus and herpes simplex virus type 2. By contrast, both methods reduced significantly the antiviral activities against rhinovirus and herpes simplex virus type 1. Unexpectedly, Holder pasteurization improved milk's anti-rotavirus activity. In conclusion, this study contributes to the definition of the pasteurization method that allows the best compromise between microbiological safety and biological quality of the donor human milk: HTST pasteurization preserved milk antiviral activity better than Holder

    Microscopy in forensic science

    Get PDF
    This chapter examines the use of electron microscopy, atomic force microscopy and other analytical techniques in forensic investigation and research. These tools can be used to enhance examination of human remains and trace evidence to improve understanding of cause of death, victim identification or post mortem interval.A police-designed scenario is used to highlight trace evidence such as glass, gun shot residue and paint. The validity of forensic techniques is discussed, with reference to international standards, repeatability, and false convictions. Ballistic evidence is used to highlight the complexities in evidence interpretation, including manufacturing variability, environmental effects and likelihood ratios.The use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and other techniques in the development of forensic research is showcased, with particular examples from the field of fingerprints. Examples include improvements in the development of fingermarks from difficult surfaces, interaction of evidence types, and added intelligence from the crime scene, such as forensic timeline or gender of perpetrator

    The Biology and Ecology of the Emerald Ash Borer, Agrilus planipennis, in China

    Get PDF
    The biology, ecology, and life cycle of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), were studied using regular inspection in the forest and observations in the laboratory. Results indicated that A. planipennis are mostly univoltine in Tianjin, China. They overwintered individually as mature larvae in shallow chambers excavated in the outer sapwood. In late July, some full-grown larvae began to build overwintering chambers, and all larvae entered the sapwood for dormancy by early November. A. planipennis pupated in the overwintering chamber from early April to mid May the following year, and the average pupal duration was about 20 days. In late April, some newly eclosed adults could be found in the pupal cells, but they had not yet emerged from the tree. Adults began to emerge in early May, with peak flight occurring in mid May. The average longevity of adults was about 21 days and the adult stage lasted through early July. The adults fed on ash foliage as a source of nutrition. Mating was usually conducted and completed on the leaf or trunk surfaces of ash trees. Oviposition began in mid May and eggs hatched on average in 15.7 days. The first instar larvae appeared in early June. The larval stage lasted about 300 days to complete an entire generation. The emerald ash borer had four larval instars on velvet ash, Fraxinus velutina (Scrophulariales: Oleaceae). The major natural control factors of A. planipennis were also investigated, and preliminary suggestions for its integrated management are proposed
    • …
    corecore