4 research outputs found

    Saturation and Wilson Line Distributions

    Get PDF
    We introduce a Wilson line distribution function bar{W}_tau(v) to study gluon saturation at small Feynman x_F, or large tau=ln(1/x_F). This new distribution can be obtained from the distribution W_tau(alpha) of the Color Glass Condensate model and the JIMWLK renormalization group equation. bar{W}_tau(v) is physically more relevant, and mathematically simpler to deal with because of unitarity of the Wilson line v. A JIMWLK equation is derived for bar{W}_tau(v); its properties are studied. These properties are used to complete Mueller's derivation of the JIMWLK equation, though for bar{W}_tau(v) and not W_tau(alpha). They are used to derive a generalized Balitsky-Kovchegov equation for higher multipole amplitudes. They are also used to compute the unintegrated gluon distribution at x_F=0, yielding a completely flat spectrum in transverse momentum squared k^2, with a known height. This is similar but not identical to the mean field result at small k^2.Comment: One reference and two short comments added. To appear in Physical Revies

    Solid-State Protein Junctions:Cross-Laboratory Study Shows Preservation of Mechanism at Varying Electronic Coupling

    Get PDF
    Successful integration of proteins in solid-state electronics requires contacting them in a non-invasive fashion, with a solid conducting surface for immobilization as one such contact. The contacts can affect and even dominate the measured electronic transport. Often substrates, substrate treatments, protein immobilization, and device geometries differ between laboratories. Thus the question arises how far results from different laboratories and platforms are comparable and how to distinguish genuine protein electronic transport properties from platform-induced ones. We report a systematic comparison of electronic transport measurements between different laboratories, using all commonly used large-area schemes to contact a set of three proteins of largely different types. Altogether we study eight different combinations of molecular junction configurations, designed so that Ageo of junctions varies from 105 to 10−3 μm2. Although for the same protein, measured with similar device geometry, results compare reasonably well, there are significant differences in current densities (an intensive variable) between different device geometries. Likely, these originate in the critical contact-protein coupling (∼contact resistance), in addition to the actual number of proteins involved, because the effective junction contact area depends on the nanometric roughness of the electrodes and at times, even the proteins may increase this roughness. On the positive side, our results show that understanding what controls the coupling can make the coupling a design knob. In terms of extensive variables, such as temperature, our comparison unanimously shows the transport to be independent of temperature for all studied configurations and proteins. Our study places coupling and lack of temperature activation as key aspects to be considered in both modeling and practice of protein electronic transport experiments
    corecore