52 research outputs found

    Super-Radiance and the Unstable Photon Oscillator

    Full text link
    If the damping of a simple harmonic oscillator from a thermally random force is sufficiently strong, then the oscillator may become unstable. For a photon oscillator (radiatively damped by electric dipole moments), the instability leads to a low temperature Hepp-Lieb-Preparata super-radiant phase transition. The stable oscillator regime is described by the free energy of the conventional Casimir effect. The unstable (strongly damped) oscillator has a free energy corresponding to Dicke super-radiance.Comment: 6 pages ReVTeX 2 figures *.ep

    Origin of second-harmonic generation in the incommensurate phase of K2SeO4

    Full text link
    We show that a ferroelectric phase transition takes place in the incommensurate phase of the K2SeO4 crystal. The ferroelectric character of the IC phase explains the second-harmonic generation observed in the corresponding temperature range.Comment: 5 pages, 1 figur

    Spectral sum rules for the Tomonaga-Luttinger model

    Full text link
    In connection with recent publications we discuss spectral sum rules for the Tomonaga-Luttinger model without using the explicit result for the one-electron Green's function. They are usefull in the interpretation of recent high resolution photoemission spectra of quasi-one-dimensional conductors. It is shown that the limit of infinite frequency and band cut\-off do not commute. Our result for arbitrary shape of the interaction potential generalizes an earlier discussion by Suzumura. A general analytical expression for the spectral function for wave vectors far from the Fermi wave vector kFk_{F} is presented. Numerical spectra are shown to illustrate the sum rules.Comment: 9 pages, REVTEX 3.0, 2 figures added as postscript file

    Upper Critical Field in a Spin-Charge Separated Superconductor

    Full text link
    It is demonstrated that the spatial decay of the pair propagator in a Luttinger liquid with spin charge separation contains a logarithmic correction relative to the free fermi gas result in a finite interval between the spin and charge thermal lengths. It is argued that similar effects can be expected in higher dimensional systems with spin charge separation and that the temperature dependence of the upper critical field Hc2H_{c2} curve is a probe of this effect.Comment: 3 pages, postscript file (compressed and uuencoded

    Radiative Phase Transitions and Casmir Effect Instabilities

    Full text link
    Molecular quantum electrodynamics leads to photon frequency shifts and thus to changes in condensed matter free energies often called the Casimir effect. Strong quantum electrodynamic coupling between radiation and molecular motions can lead to an instability beyond which one or more photon oscillators undergo a displacement phase transition. The phase boundary of the transition can be located by a Casimir free energy instability.Comment: ReVTeX4 format 1 *.eps figur

    The thermal operator representation for Matsubara sums

    Full text link
    We prove in full generality the thermal operator representation for Matsubara sums in a relativistic field theory of scalar and fermionic particles. It states that the full result of performing the Matsubara sum associated to any given Feynman graph, in the imaginary-time formalism of finite-temperature field theory, can be directly obtained from its corresponding zero-temperature energy integral, by means of a simple linear operator, which is independent of the external Euclidean energies and whose form depends solely on the topology of the graph.Comment: 9 pages, 1 figure, RevTe

    Influence of Retardation on the Vibrational Wave Function and Binding Energy of the Helium Dimer

    Get PDF
    Because of the extremely small binding energy of the helium dimer, the nuclear wave function is delocalized over an extremely large range of separations. One might therefore expect the properties of this extraordinary species to be sensitive to the potential at very large internuclear distances, r, where relativistic corrections to the usual van der Waals interaction may be important. We have estimated the effect of retardation, which changes the r-6 dependence of the potential to r-7 in the limit of large r, and have found that the binding energy and expectation value (r) are indeed significantly affected by its inclusion

    Disclination Asymmetry in Two-Dimensional Nematic Liquid Crystals with Unequal Frank Constants

    Full text link
    The behavior of a thin film of nematic liquid crystal with unequal Frank constants is discussed. Distinct Frank constants are found to imply unequal core energies for +1/2+1/2 and 1/2-1/2 disclinations. Even so, a topological constraint is shown to ensure that the bulk densities of the two types of disclinations are the same. For a system with free boundary conditions, such as a liquid membrane, unequal core energies simply renormalize the Gaussian rigidity and line tension.Comment: RevTex forma

    An operator representation for Matsubara sums

    Full text link
    In the context of the imaginary-time formalism for a scalar thermal field theory, it is shown that the result of performing the sums over Matsubara frequencies associated with loop Feynman diagrams can be written, for some classes of diagrams, in terms of the action of a simple linear operator on the corresponding energy integrals of the Euclidean theory at T=0. In its simplest form the referred operator depends only on the number of internal propagators of the graph. More precisely, it is shown explicitly that this \emph{thermal operator representation} holds for two generic classes of diagrams, namely, the two-vertex diagram with an arbitrary number of internal propagators, and the one-loop diagram with an arbitrary number of vertices. The validity of the thermal operator representation for diagrams of more complicated topologies remains an open problem. Its correctness is shown to be equivalent to the correctness of some diagrammatic rules proposed a few years ago.Comment: 4 figures; references added, minor changes in notation, final version accepted for publicatio

    Kinetic vs. Thermal-Field-Theory Approach to Cosmological Perturbations

    Full text link
    A closed set of equations for the evolution of linear perturbations of homogeneous, isotropic cosmological models can be obtained in various ways. The simplest approach is to assume a macroscopic equation of state, e.g.\ that of a perfect fluid. For a more refined description of the early universe, a microscopic treatment is required. The purpose of this paper is to compare the approach based on classical kinetic theory to the more recent thermal-field-theory approach. It is shown that in the high-temperature limit the latter describes cosmological perturbations supported by collisionless, massless matter, wherein it is equivalent to the kinetic theory approach. The dependence of the perturbations in a system of a collisionless gas and a perfect fluid on the initial data is discussed in some detail. All singular and regular solutions are found analytically.Comment: 31 pages, 10 figures (uu encoded ps-file appended), REVTEX 3.0, DESY 94-040 / TUW-93-2
    corecore