492 research outputs found
Holomorphic Supercurves and Supersymmetric Sigma Models
We introduce a natural generalisation of holomorphic curves to morphisms of
supermanifolds, referred to as holomorphic supercurves. More precisely,
supercurves are morphisms from a Riemann surface, endowed with the structure of
a supermanifold which is induced by a holomorphic line bundle, to an ordinary
almost complex manifold. They are called holomorphic if a generalised
Cauchy-Riemann condition is satisfied. We show, by means of an action identity,
that holomorphic supercurves are special extrema of a supersymmetric action
functional.Comment: 30 page
Forgetful maps between Deligne-Mostow ball quotients
We study forgetful maps between Deligne-Mostow moduli spaces of weighted
points on P^1, and classify the forgetful maps that extend to a map of
orbifolds between the stable completions. The cases where this happens include
the Livn\'e fibrations and the Mostow/Toledo maps between complex hyperbolic
surfaces. They also include a retraction of a 3-dimensional ball quotient onto
one of its 1-dimensional totally geodesic complex submanifolds
The Uncertainty of Fluxes
In the ordinary quantum Maxwell theory of a free electromagnetic field,
formulated on a curved 3-manifold, we observe that magnetic and electric fluxes
cannot be simultaneously measured. This uncertainty principle reflects torsion:
fluxes modulo torsion can be simultaneously measured. We also develop the
Hamilton theory of self-dual fields, noting that they are quantized by
Pontrjagin self-dual cohomology theories and that the quantum Hilbert space is
Z/2-graded, so typically contains both bosonic and fermionic states.
Significantly, these ideas apply to the Ramond-Ramond field in string theory,
showing that its K-theory class cannot be measured.Comment: 33 pages; minor modifications for publication in Commun. Math. Phy
A representation formula for maps on supermanifolds
In this paper we analyze the notion of morphisms of rings of superfunctions
which is the basic concept underlying the definition of supermanifolds as
ringed spaces (i.e. following Berezin, Leites, Manin, etc.). We establish a
representation formula for all morphisms from the algebra of functions on an
ordinary manifolds to the superalgebra of functions on an open subset of
R^{p|q}. We then derive two consequences of this result. The first one is that
we can integrate the data associated with a morphism in order to get a (non
unique) map defined on an ordinary space (and uniqueness can achieved by
restriction to a scheme). The second one is a simple and intuitive recipe to
compute pull-back images of a function on a manifold by a map defined on a
superspace.Comment: 23 page
Large-time Behavior of Solutions to the Inflow Problem of Full Compressible Navier-Stokes Equations
Large-time behavior of solutions to the inflow problem of full compressible
Navier-Stokes equations is investigated on the half line .
The wave structure which contains four waves: the transonic(or degenerate)
boundary layer solution, 1-rarefaction wave, viscous 2-contact wave and
3-rarefaction wave to the inflow problem is described and the asymptotic
stability of the superposition of the above four wave patterns to the inflow
problem of full compressible Navier-Stokes equations is proven under some
smallness conditions. The proof is given by the elementary energy analysis
based on the underlying wave structure. The main points in the proof are the
degeneracies of the transonic boundary layer solution and the wave interactions
in the superposition wave.Comment: 27 page
Extended Poincar\'e supersymmetry in three dimensions and supersymmetric anyons
We classify the unitary representations of the extended Poincar\'e
supergroups in three dimensions. Irreducible unitary representations of any
spin can appear, which correspond to supersymmetric anyons. Our results also
show that all irreducible unitary representations necessarily have physical
momenta. This is in sharp contrast to the ordinary Poincar\'e group in three
dimensions, that admits in addition irreducible unitary representations with
non-physical momenta, which are discarded on physical grounds.Comment: 7 pages; commentaries added in Sect. IV A and in Conclusion; added
reference
A construction of Frobenius manifolds with logarithmic poles and applications
A construction theorem for Frobenius manifolds with logarithmic poles is
established. This is a generalization of a theorem of Hertling and Manin. As an
application we prove a generalization of the reconstruction theorem of
Kontsevich and Manin for projective smooth varieties with convergent
Gromov-Witten potential. A second application is a construction of Frobenius
manifolds out of a variation of polarized Hodge structures which degenerates
along a normal crossing divisor when certain generation conditions are
fulfilled.Comment: 46 page
Surface Operators in N=2 Abelian Gauge Theory
We generalise the analysis in [arXiv:0904.1744] to superspace, and explicitly
prove that for any embedding of surface operators in a general, twisted N=2
pure abelian theory on an arbitrary four-manifold, the parameters transform
naturally under the SL(2,Z) duality of the theory. However, for
nontrivially-embedded surface operators, exact S-duality holds if and only if
the "quantum" parameter effectively vanishes, while the overall SL(2,Z) duality
holds up to a c-number at most, regardless. Nevertheless, this observation sets
the stage for a physical proof of a remarkable mathematical result by
Kronheimer and Mrowka--that expresses a "ramified" analog of the Donaldson
invariants solely in terms of the ordinary Donaldson invariants--which, will
appear, among other things, in forthcoming work. As a prelude to that, the
effective interaction on the corresponding u-plane will be computed. In
addition, the dependence on second Stiefel-Whitney classes and the appearance
of a Spin^c structure in the associated low-energy Seiberg-Witten theory with
surface operators, will also be demonstrated. In the process, we will stumble
upon an interesting phase factor that is otherwise absent in the "unramified"
case.Comment: 46 pages. Minor refinemen
On the monodromy of the moduli space of Calabi-Yau threefolds coming from eight planes in
It is a fundamental problem in geometry to decide which moduli spaces of
polarized algebraic varieties are embedded by their period maps as Zariski open
subsets of locally Hermitian symmetric domains. In the present work we prove
that the moduli space of Calabi-Yau threefolds coming from eight planes in
does {\em not} have this property. We show furthermore that the
monodromy group of a good family is Zariski dense in the corresponding
symplectic group. Moreover, we study a natural sublocus which we call
hyperelliptic locus, over which the variation of Hodge structures is naturally
isomorphic to wedge product of a variation of Hodge structures of weight one.
It turns out the hyperelliptic locus does not extend to a Shimura subvariety of
type III (Siegel space) within the moduli space. Besides general Hodge theory,
representation theory and computational commutative algebra, one of the proofs
depends on a new result on the tensor product decomposition of complex
polarized variations of Hodge structures.Comment: 26 page
Conformal blocks and generalized theta functions
Let M(r) be the moduli space of rank r vector bundles with trivial
determinant on a Riemann surface X . This space carries a natural line bundle,
the determinant line bundle L . We describe a canonical isomorphism of the
space of global sections of L^k with a space known in conformal field theory as
the ``space of conformal blocks", which is defined in terms of representations
of the Lie algebra sl(r, C((z))).Comment: 43 pages, Plain Te
- …