40,926 research outputs found
Precise determination of the lattice spacing in full lattice QCD
We compare three different methods to determine the lattice spacing in
lattice QCD and give results from calculations on the MILC ensembles of
configurations that include the effect of , and sea quarks. It is
useful, for ensemble to ensemble comparison, to express the results as giving a
physical value for , a parameter from the heavy quark potential. Combining
the three methods gives a value for in the continuum limit of
0.3133(23)(3) fm. Using the MILC values for , this corresponds to a
value for the parameter of 0.4661(38) fm. We also discuss how to use the
for determining the lattice spacing and tuning the -quark mass
accurately, by giving values for (0.6858(40) GeV) and
(0.1815(10) GeV).Comment: 15 page
Near-infrared integral field spectroscopy of Massive Young Stellar Objects
We present medium resolution () -band integral field
spectroscopy of six MYSOs. The targets are selected from the RMS survey, and we
used the NIFS on the Gemini North telescope. The data show various spectral
line features including Br, CO, H, and \mbox{He\,{\sc i}}. The
Br line is detected in emission in all objects with
-- 200 kms. V645 Cyg shows a high-velocity
P-Cygni profile between -800 kms and -300 kms. We performed
three-dimensional spectroastrometry to diagnose the circumstellar environment
in the vicinity of the central stars using the Br line. We measured the
centroids of the velocity components with sub-mas precision. The centroids
allow us to discriminate the blueshifted and redshifted components in a roughly
east--west direction in both IRAS 18151--1208 and S106 in Br. This lies
almost perpendicular to observed larger scale outflows. We conclude, given the
widths of the lines and the orientation of the spectroastrometric signature,
that our results trace a disc wind in both IRAS 18151--1208 and S106. The CO
absorption lines at low transitions are detected in IRAS
18151--1208 and AFGL 2136. We analysed the velocity structure of the neutral
gas discs. In IRAS 18151--1208, the absorption centroids of the blueshifted and
redshifted components are separated in a direction of north-east to south-west,
nearly perpendicular to that of the larger scale jet. The
position-velocity relations of these objects can be reproduced with central
masses of 30 M_{\sun} for IRAS 18151--1208 and 20 M_{\sun} for AFGL 2136.
We also detect CO bandhead emission in IRAS 18151--1208, S106 and
V645 Cyg. The results can be fitted reasonably with a Keplerian rotation model,
with masses of 15, 20 and 20 M_{\sun} respectively.Comment: 17 pages, 10 figures, accepted by MNRA
On O-X mode conversion in 2D inhomogeneous plasma with a sheared magnetic field
The conversion of an ordinary wave to an extraordinary wave in a 2D
inhomogeneous slab model of the plasma confined by a sheared magnetic field is
studied analytically.Comment: sub. to PPC
Mesonic decay constants in lattice NRQCD
Lattice NRQCD with leading finite lattice spacing errors removed is used to
calculate decay constants of mesons made up of heavy quarks. Quenched
simulations are done with a tadpole improved gauge action containing plaquette
and six-link rectangular terms. The tadpole factor is estimated using the
Landau link. For each of the three values of the coupling constant considered,
quarkonia are calculated for five masses spanning the range from charmonium
through bottomonium, and one set of quark masses is tuned to the B(c).
"Perturbative" and nonperturbative meson masses are compared. One-loop
perturbative matching of lattice NRQCD with continuum QCD for the heavy-heavy
vector and axial vector currents is performed. The data are consistent with the
vector meson decay constants of quarkonia being proportional to the square root
of their mass and the B(c) decay constant being equal to 420(13) MeV.Comment: 25 pages in REVTe
The origin of the red luminescence in Mg-doped GaN
Optically-detected magnetic resonance (ODMR) and positron annihilation
spectroscopy (PAS) experiments have been employed to study magnesium-doped GaN
layers grown by metal-organic vapor phase epitaxy. As the Mg doping level is
changed, the combined experiments reveal a strong correlation between the
vacancy concentrations and the intensity of the red photoluminescence band at
1.8 eV. The analysis provides strong evidence that the emission is due to
recombination in which electrons both from effective mass donors and from
deeper donors recombine with deep centers, the deep centers being
vacancy-related defects.Comment: 4 pages, 3 figure
The Fulling-Davies-Unruh Effect is Mandatory: The Proton's Testimony
We discuss the decay of accelerated protons and illustrate how the
Fulling-Davies-Unruh effect is indeed mandatory to maintain the consistency of
standard Quantum Field Theory. The confidence level of the Fulling-Davies-Unruh
effect must be the same as that of Quantum Field Theory itself.Comment: Awarded "honorable mention" by Gravity Research Foundation in the
2002 Essay competitio
Surface Brightness Gradients Produced by the Ring Waves of Star Formation
We compute surface brightness profiles of galactic disks for outwardly
propagating waves of star formation with a view to investigate the stellar
populations in ring galaxies. We consider two mechanisms which can create
outwardly propagating star forming rings in a purely gaseous disk --- a
self-induced wave and a density wave. We show that the surface brightness
profiles produced by both scenarios of ring formation are similar and are
strongly sensitive to the velocity of the wave. The results of our computations
are compared with the observational quantities sensitive to the young and old
stellar populations in the ring galaxies A0035-335 (the Cartwheel galaxy) and
VIIZw466. The best fit to the observed radial H_alpha surface brightness
distribution in the Cartwheel galaxy is obtained for a wave velocity of about
90 km/s. The red continuum brightness of the ring can be fully explained by the
evolving stars present in the trailing part of the wave. However the red
continuum brightness in regions internal to the ring indicates that the wave of
star formation propagates in a pre-existing stellar disk in the Cartwheel. The
H_alpha and K-band surface brightness profiles in VIIZw466 match the values
expected from stellar populations produced by a wave of star formation
propagating in a purely gaseous disk very well. We conclude that VIIZw466 is
probably experiencing the first event of star formation in the disk.Comment: Uses aas2pp4.sty and epsfig.sty, 15 pages To appear in Astrophysical
Journal, March 10, 199
Two-Dimensional Electron Gas in InGaAs/InAlAs Quantum Wells
We designed and performed low temperature DC transport characterization
studies on two-dimensional electron gases confined in lattice-matched
InGaAs/InAlAs quantum wells grown by
molecular beam epitaxy on InP substrates. The nearly constant mobility for
samples with the setback distance larger than 50nm and the similarity between
the quantum and transport life-time suggest that the main scattering mechanism
is due to short range scattering, such as alloy scattering, with a scattering
rate of 2.2 ps. We also obtain the Fermi level at the
InGaAs/InAlAs surface to be 0.36eV above
the conduction band, when fitting our experimental densities with a
Poisson-Schr\"odinger model.Comment: Accepted in Applied Physics Letter
A Prediction of the B*_c mass in full lattice QCD
By using the Highly Improved Staggered Quark formalism to handle charm,
strange and light valence quarks in full lattice QCD, and NRQCD to handle
bottom valence quarks we are able to determine accurately ratios of the B meson
vector-pseudoscalar mass splittings, in particular,
(m(B*_c)-m(B_c))/(m(B*_s)-m(B_s)). We find this ratio to be 1.15(15), showing
the `light' quark mass dependence of this splitting to be very small. Hence we
predict m(B_c*) = 6.330(7)(2)(6) GeV where the first two errors are from the
lattice calculation and the third from existing experiment. This is the most
accurate prediction of a gold-plated hadron mass from lattice QCD to date.Comment: 4 pages, 2 figure
Concept study for a high-efficiency nanowire-based thermoelectric
Materials capable of highly efficient, direct thermal-to-electric energy
conversion would have substantial economic potential. Theory predicts that
thermoelectric efficiencies approaching the Carnot limit can be achieved at low
temperatures in one-dimensional conductors that contain an energy filter such
as a double-barrier resonant tunneling structure. The recent advances in growth
techniques suggest that such devices can now be realized in heterostructured,
semiconductor nanowires. Here we propose specific structural parameters for
InAs/InP nanowires that may allow the experimental observation of near-Carnot
efficient thermoelectric energy conversion in a single nanowire at low
temperature
- …