477 research outputs found

    Degeneracy of consistency equations in braneworld inflation

    Full text link
    In a Randall-Sundrum type II inflationary scenario we compute perturbation amplitudes and spectral indices up to next-to-lowest order in the slow-roll parameters, starting from the well-known lowest-order result for a de Sitter brane. Using two different prescriptions for the tensor amplitude, we show that the braneworld consistency equations are not degenerate with respect to the standard relations and we explore their observational consequences. It is then shown that, while the degeneracy between high- and low-energy regimes can come from suitable values of the cosmological observables, exact functional matching between consistency expressions is plausibly discarded. This result is then extended to the Gauss-Bonnet case.Comment: 16 pages, 3 figures. v3: major revision. Changed title, updated references, rearranged material, new prescription for the tensor spectrum, new figures, extended and more robust conclusion

    Gravitational waves from brane-world inflation with induced gravity

    Get PDF
    We calculate the amplitude of gravitational waves produced by inflation on a de Sitter brane embedded in five-dimensional anti-de Sitter bulk spacetime, extending previous calculations in Randall-Sundrum type cosmology to include the effect of induced gravity corrections on the brane. These corrections arise via a term in the brane action that is proportional to the brane Ricci scalar. We find that, as in the Randall-Sundrum case, there is a mass gap between the discrete zero-mode and a continuum of massive bulk modes, which are too heavy to be excited during inflation. We give the normalization of the zero-mode as a function of the Hubble rate on the brane and are thus able to calculate the high energy correction to the spectrum of gravitational wave (tensor) modes excited on large scales during inflation from initial vacuum fluctuations on small scales. We also calculate the amplitude of density (scalar) perturbations expected due to inflaton fluctuations on the brane, and show that the usual four-dimensional consistency relation for the tensor/scalar ratio remains valid for brane inflation with induced gravity corrections.Comment: 8 pages, 2 figure

    The longitudinal negative impact of early stressful events on emotional and physical well-being: The buffering role of cardiac vagal development

    Get PDF
    Early stressful events negatively affect emotional and physical well-being. Cardiac vagal tone (CVT), which is associated with better emotional and physical well-being, usually gradually increase in early childhood. Nonetheless, children's CVT developmental trajectories are greatly variable, such that CVT can increase or decrease across the years. The present study examines the longitudinal effects of early stressful events and the role of 4 years CVT developmental trajectory on children's emotional and physical well-being. Forty-two 4-year-old children were enrolled. Number of stressful events and resting electrocardiogram (ECG) were collected at T1. ECG was registered again after one (T2), two (T3) and three (T4) years. Children's emotional and physical well-being were assessed at T4 through the Child Health and Illness Profile – Child Edition (CHIP–CE). CVT development was calculated as the angular coefficient, reflecting the developmental trajectory of CVT across the four timepoints. Results yielded that higher experienced stressful events predicted poorer emotional and physical well-being after 4 years. The interaction between the number of stressful events and CVT development emerged on physical well-being. Early stressful events negatively affect long-term children's emotional and physical well-being while a positive CVT development seems to mitigate the negative effects of early stressful events on physical well-being

    Cosmological constraints from Gauss-Bonnet braneworld with large-field potentials

    Full text link
    We calculate the spectral index and tensor-to-scalar ratio for patch inflation defined by H2βq2VqH^2\approx \beta^2_q V^q and ϕ˙V/3H\dot{\phi}\approx -V'/3H, using the slow-roll expansion. The patch cosmology arisen from the Gauss-Bonnet braneworld consists of Gauss-Bonnet (GB), Randall-Sundrum (RS), and 4D general relativistic (GR) cosmological models. In this work, we choose large-field potentials of V=V0ϕpV=V_0\phi^p to compare with the observational data. Since second-order corrections are rather small in the slow-roll limit, the leading-order calculation is sufficient to compare with the data. Finally, we show that it is easier to discriminate between quadratic potential and quartic potential in the GB cosmological model rather than the GR or RS cosmological models.Comment: 13 pages, title changed, version to appear in JCA

    Slow-roll corrections to inflaton fluctuations on a brane

    Get PDF
    Quantum fluctuations of an inflaton field, slow-rolling during inflation are coupled to metric fluctuations. In conventional four dimensional cosmology one can calculate the effect of scalar metric perturbations as slow-roll corrections to the evolution of a massless free field in de Sitter spacetime. This gives the well-known first-order corrections to the field perturbations after horizon-exit. If inflaton fluctuations on a four dimensional brane embedded in a five dimensional bulk spacetime are studied to first-order in slow-roll then we recover the usual conserved curvature perturbation on super-horizon scales. But on small scales, at high energies, we find that the coupling to the bulk metric perturbations cannot be neglected, leading to a modified amplitude of vacuum oscillations on small scales. This is a large effect which casts doubt on the reliability of the usual calculation of inflaton fluctuations on the brane neglecting their gravitational coupling.Comment: 18 pages, 4 figure

    Slow-roll corrections to inflaton fluctuations on a brane

    Get PDF
    Quantum fluctuations of an inflaton field, slow-rolling during inflation are coupled to metric fluctuations. In conventional four dimensional cosmology one can calculate the effect of scalar metric perturbations as slow-roll corrections to the evolution of a massless free field in de Sitter spacetime. This gives the well-known first-order corrections to the field perturbations after horizon-exit. If inflaton fluctuations on a four dimensional brane embedded in a five dimensional bulk spacetime are studied to first-order in slow-roll then we recover the usual conserved curvature perturbation on super-horizon scales. But on small scales, at high energies, we find that the coupling to the bulk metric perturbations cannot be neglected, leading to a modified amplitude of vacuum oscillations on small scales. This is a large effect which casts doubt on the reliability of the usual calculation of inflaton fluctuations on the brane neglecting their gravitational coupling.Comment: 18 pages, 4 figure

    Cosmological tachyon from cubic string field theory

    Full text link
    The classical dynamics of the tachyon scalar field of cubic string field theory is considered on a cosmological background. Starting from a nonlocal action with arbitrary tachyon potential, which encodes the bosonic and several supersymmetric cases, we study the equations of motion in the Hamilton-Jacobi formalism and with a generalized Friedmann equation, appliable in braneworld or modified gravity models. The cases of cubic (bosonic) and quartic (supersymmetric) tachyon potential in general relativity are automatically included. We comment the validity of the slow-roll approximation, the stability of the cosmological perturbations, and the relation between this tachyon and the Dirac-Born-Infeld one.Comment: 20 pages JHEP style, 1 figure; v4: misprints corrected, matches the published versio

    Quantitative analysis of multi-spectral fundus images

    Get PDF
    We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised by the concentrations of the five main absorbers found in the fundus: retinal haemoglobins, choroidal haemoglobins, choroidal melanin, RPE melanin and macular pigment. These parameters are shown to give rise to distinct variations in the tissue colouration. We use the results of the Monte Carlo simulations to construct an inverse model which maps tissue colouration onto the model parameters. This allows the concentration and distribution of the five main absorbers to be determined from suitable multi-spectral images. We propose the use of "image quotients" to allow this information to be extracted from uncalibrated image data. The filters used to acquire the images are selected to ensure a one-to-one mapping between model parameters and image quotients. To recover five model parameters uniquely, images must be acquired in six distinct spectral bands. Theoretical investigations suggest that retinal haemoglobins and macular pigment can be recovered with RMS errors of less than 10%. We present parametric maps showing the variation of these parameters across the posterior pole of the fundus. The results are in agreement with known tissue histology for normal healthy subjects. We also present an early result which suggests that, with further development, the technique could be used to successfully detect retinal haemorrhages

    How to measure success in lower extremity reconstruction, which outcome measurements do we use a systematic review and metanalysis

    Get PDF
    Different factors have to be considered and weighted in the treatment algorithm of lower extremity reconstruction. A combination of both clinicians' and patients' perspectives is necessary to provide a conclusive picture. Currently, there aren't any standardized and validated measurement data sets for lower extremity reconstructions. This makes it necessary to identify the relevant domains. We, therefore, performed a systematic review and metanalysis of outcome measurements and evaluated their ability to measure outcomes after lower extremity reconstruction. A systematic review and metanalysis according to the 'Preferred Reporting Items for Systematic Reviews and Meta-Analyses' protocol were performed for studies reporting at least one structured outcome measurement of lower extremity reconstruction. Both Patient (PROMs)- and Clinician reported outcome measurements (CROMs)were analyzed. Of the 2827 identified articles, 102 were included in the final analysis. In total 86 outcome measurements were identified, 34 CROMs, 44 PROMs and 8 (9.3%) outcome measurements that have elements of both. Twenty-four measure functional outcome, 3 pain, 10 sensations and proprioception, 9 quality of life, 8 satisfaction with the result, 5 measure the aesthetic outcome, 6 contours and flap stability and 21 contain multidomain elements. A multitude of different outcome measurements is currently used in lower extremity reconstruction So far, no consensus has been reached on what to measure and how. Validation and standardization of both PROMs and CROMs in plastic surgery is needed to improve the outcome of our patients, better meet their needs and expectations and eventually optimize extremity reconstruction by enabling a direct comparison of studies' results

    Multispectral imaging of the ocular fundus using light emitting diode illumination

    Get PDF
    We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration
    corecore